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Abstract
The rising popularity of health-related wearables has increased the demand for computational offloading. Latency, battery 
life, and compute capabilities are all areas that could use significant improvement despite the massive expansion of wearable 
devices and offloading techniques. There are a number of issues caused by the limited battery life of mobile devices, so it is 
essential to conserve power by moving responsibilities for running applications to the cloud. This is especially crucial in situ-
ations where scheduling is being done in a dynamic mobile cloud computing environment. In this piece, we highlight the 
fact that most smart wearable devices can pair with smartphones via Bluetooth, and that this connection is significantly more 
power-efficient than 3G/LTE or Wi-Fi communication. To be more precise, we investigate the origins of this phenomenon. 
New computing technology, Mobile Edge Computing (MEC), may be the answer to capacity and performance problems in 
older systems like Mobile Cloud Computing (MCC). Some examples of these problems include excessive latency, a clogged 
core network, a lack of quality of experience (QoE), and the wasteful consumption of expensive resources like power and 
data transfer. To address these issues in the MEC setting, we introduced a Deep Belief Network (DBN) equipped with a 
Markov Approximation Algorithm (MAA). Because of this, a choice could be made that takes into account energy use, time 
constraints, and system load. AFCFS, MINET, and trade-off judgments for code offloading are all examples of state-of-the-
art techniques that can be outperformed by this approach (TRADEOFF). Using entropy encoding as a post-processing step 
after quantization allows for lossless compression of an image. It allows for a picture to be shown in a way that is both more 
effective and requires less space for storage or transmission. Our proposed DBN-MAA reduces energy consumption while 
simultaneously increasing the number of completed jobs, as shown by the simulation experiment results.

Keywords  Deep belief network · Markov approximation · Mobile edge computing · Energy efficiency and entropy 
encoding

1  Introduction

Mobile devices (MDs) are frequently utilized to gather and 
process data because of the growth of IoT technology. These 
gadgets are typically designed to be compact, with a meagre 

supply of computational power and energy. Concerns about 
the excessive energy consumption of mobile devices have 
been raised because the processing unit on these devices 
may take a long time to execute some computing jobs in 
some apps. To overcome the obstacle between the demand 
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for complicated applications and the availability of limited 
resources, mobile cloud computing (MCC) is offered. Com-
puting tasks are typically carried out on the central cloud, 
which has abundant processing capabilities and huge stor-
age capacity in MCC application scenarios [1]. Using this 
technique, MDs were able to handle difficult calculation 
tasks with just locally high energy consumption [2]. Usu-
ally, centralized servers are far from MDs. Increased use of 
real-time operations and the requirement for low latency for 
MCC are consequences of the proliferation of Internet and 
5G mobile networks.

The problems have been solved with the establishment 
of MEC. Servers at the network's edge are typically located 
strategically throughout a mobile ad hoc network (commonly 
with the wireless base station in 5G networks). When servers 
are located closer to MDs, latency and energy consumption 
due to data transmission can be effectively decreased. When 
compared to a centralized server cluster, the resources avail-
able on MEC servers are limited. Given that MEC servers 
only cover a specific area, this shouldn't be an issue. It's 
simple to adjust the capacity to meet the needs of the situ-
ation. There's also the fact that MDs don't always produce 
huge computation jobs, so sending them to be processed on 
servers regardless of their size is a waste of resources. With 
the advent of MEC, MDs have greater flexibility in handling 
workloads, both in terms of when and by how much to out-
source computational tasks. The quality of service greatly 
fluctuates depending on offloading decisions (QoS). Com-
putation offloading choices, given the above, are an increas-
ingly studied subfield of MEC.

Compression is the process of reducing the amount of 
data used to represent a file, image, or video without sacri-
ficing the quality of the original data. Image compression is 
the use of data compression to compress digital images. The 
primary goal of image compression is to reduce redundancy 
and irrelevancy in images so that they can be stored and 
transferred more efficiently. When compared to the origi-
nal, the compressed image uses fewer bits. As a result, the 
required storage size will be reduced, allowing for maximum 
image storage and faster transfer to save time and transmis-
sion bandwidth.

In theory, pictures taken on mobile devices should be able 
to be processed using the same algorithms that are used for 
other kinds of pictures. However, when directly applied to a 
problem, the effectiveness of such algorithms is diminished 
due to the many constraints and outside factors. The vast 
majority of mobile devices continue to have significantly 
less computing power than computers that have been specifi-
cally designed for image compression. They are also pow-
ered by a battery, and the limited energy that is stored in the 
battery needs to be conserved so that the device can fulfil 
its primary purpose. Image processing on mobile devices 
generally faces new challenges brought on by smartphones 

in particular. The competitive nature of the market has led to 
the development of smartphones with extraordinarily high-
resolution cameras. The presence of a large number of pixels 
that need to be processed calls for algorithms that are par-
ticularly efficient. The necessity of living up to the anticipa-
tions of the end users is yet another important non-technical 
factor. Users of smartphones have come to anticipate that 
their devices will produce photographs and videos of a high 
quality, in addition to providing them with prompt access to 
processed content.

The motivation behind using compute offloading could be 
varied, including saving resources like time, energy, money, 
etc. The objective in terms of time is to lessen the lag time 
between operations, while the objective in terms of energy 
is to cut down on the amount of power consumed. The cost 
objective can be seen from both perspectives. One is the 
price of sending data, and the other is the price of computing 
power at the edge. Some tactics focus solely on one oppo-
nent. As an illustration, while [3] focuses on the time goal, 
[4] analyses the energy goal exclusively. Methods like [5] 
take into account the existence of two targets. Some studies 
take into account three or more targets, but these are rarely 
compared to those that focus on just one or two. Therefore, 
it's essential to study more than just two targets in depth.

Following the proposal of the computation offloading 
model, the optimal strategy for obtaining computation off-
loading decisions must be established. The decisions that 
are derived should produce the best possible model outcome 
given the constraints. Swarm intelligence is a term used to 
describe the collective intelligence behaviour of autonomous 
and distributed systems [6]. Further, many academics from 
different fields have taken an interest in a specific type of 
algorithm called a swarm intelligence algorithm. The given 
computation offloading paradigm has been shown to be solv-
able by many studies and applications of swarm intelligence 
optimization algorithms [7].

In this article, we will look at an MD that can adjust the 
frequency of its central processing unit (CPU) and split up 
computational tasks among several MEC servers. To reduce 
the time versus energy cost of finishing tasks on mobile 
devices, we use optimal control decisions based on job 
assignment and CPU frequency. The difficulty of solving 
this combinatorial optimization problem makes it NP-hard. 
Using this framework, which is derived from the Markov 
approximation framework, we were able to develop a nearly 
optimal approximation strategy. In a nutshell, this work 
mainly contributed these things:

•	 To make the trade-off between latency and energy as 
small as possible, it is suggested to use a nonlinear com-
binatorial optimization problem in a multimerger MEC 
system that makes use of the job assignment decision and 
the ability to scale up computing power.
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•	 To swiftly address the stated problem, our approxima-
tion strategy takes advantage of the Markov approxi-
mation framework. This strategy can give the issue a 
close-to-ideal resolution using a Markov chain and state 
changes. Here, we look at the most noteworthy features 
of the resulting Markov chain and analyse the method's 
performance optimality, approximation gap, and error 
robustness.

•	 Our Markov approximation-based strategy is put through 
its paces with a wide range of input parameters in a series 
of simulations.. Results from computer simulations show 
that this algorithm outperforms the best benchmark algo-
rithms and can produce results that are competitive with 
or better than the benchmarks.

The remaining sections of this paper are organised as 
follows. In Part 2, we'll discuss some related literature. 
Section 3 introduces the algorithm, based on the Markov 
Approximation Algorithm, that will be used to construct 
the Deep Belief Network (DBN) and the system model 
(MAA). In Section 4, we contrast the experimental outcomes 
achieved by HIBSA with those achieved by other algorithms. 
These contrasts show how much better HIBSA is than its 
rivals. In Section 5 we see the final results.

2 � Literature survey

Zhang et al. [8] The proposed process of assigning jobs 
to edge servers with enough resources in accordance with 
specific offloading policies is referred to as task offloading. 
These rules define how effectively the MEC can compute as 
well as its efficiency. Computing migration or task offload-
ing are other names for this practise. High quality of service 
(QoS) is attained by sending compute-incentivized tasks to 
MEC servers, like face recognition and video optimization. 
Mobile Edge Computing (MEC) servers can provide high 
quality of service (QoS) by processing compute-intensive 
tasks. This is because MEC servers are located closer to 
end-users, reducing latency and network congestion. Task 
offloading issues have piqued scholars' interests greatly in 
recent years.

A support vector machine-based offloading algorithm was 
put forth by Wu et al. [9]. (SVM). Applying a weight allo-
cation strategy to the process of dismantling a task into its 
component subtasks constitutes the first step of the method 
that has been suggested. The next thing that needs to be 
done is to determine whether or not each individual subtask 
is going to be completed in-house or through outsourcing. 
This is a very important step that cannot be skipped.

In Youet al. [10], the authors investigated a problem 
with minimising energy consumption in multi-user MEC 
networks, where the problem was constrained by latency. 

They devised a method for the provisioning of resources 
that ended up saving a significant amount of energy over the 
course of the project. In addition, we present a novel strat-
egy for dealing with the difficulties brought on by mobile 
computing's restricted access to power sources by integrat-
ing wireless power transfer (WPT) into mobile embedded 
computing.

To minimize power consumption and keep latency con-
straints, Cao et al. [11] described a cooperative optimization 
of computing and communication resource provisioning in 
MEC. They concluded that the cooperative method not only 
greatly improved performance but was also significantly 
more energy efficient than other methods that did not use 
cooperative design. Several previous studies have made the 
case for the MEC's techniques being energy efficient.

To lower users' overall energy consumption, Sardellitti 
et al. [12] created an adaptive strategies focused on succeed-
ing convex approximation techniques. The previous work, 
on the other hand, exclusively considered the circumstance 
where an MD is only connected to a single edge server. This 
diversity can be used to give MDs more offloading options 
and the right amount of resource capacity in future mobile 
networks, keeping service latency to a minimum while giv-
ing users a good experience.

Jang et al. [13] modified the offloading ratios of multiple 
vehicles in order to decrease their collective energy foot-
print. This was done with the consideration that the nature 
of the communication landscape is in a state of constant 
change. The proposed energy-saving offloading method 
does considerably cut down on the vehicle's overall energy 
consumption; however, it does not account for the energy 
that is required to process data at the computing node. Con-
sequently, the overall energy consumption of the vehicle 
remains relatively unchanged.

Deng et al. [14] outlined an original offloading system 
as a means of developing mobile services with offloading 
decisions that are reliable. This system takes into account 
the interdependent relationships that exist between the indi-
vidual services that make up its components. Its goal is to 
reduce the amount of time needed to complete tasks and the 
amount of power that mobile devices require. The challenge 
of compute offloading in a single-server MEC system is the 
primary focus of the research projects that have been listed 
above.

Zhang et al. [15] conducted research on the process of 
computation offloading within a distributed MEC network 
that contained multiple edge servers. In this configuration, 
Internet of Things (IoT) devices were responsible for the 
generation of computational work that included variable 
requirements and was then offloaded to MEC servers to be 
processed. This work should, in the end, result in Internet 
of Things devices that have a lower power consumption and 
a higher rate of task completion.
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In a decentralized IoT network, Anajemba et al. [16] use a 
collaborative offloading strategy for multi-access MEC that 
relies on the inefficient convergent computation offload-
ing algorithm (LSCCOA). On the other hand, none of the 
methods took into account how important it was to transfer 
responsibilities from one person to another. When it comes 
to the importance of various activities, customers place 
varying amounts of weight on different pursuits.

The MET algorithm Li et al. [17] also known as MET 
Comm in the literature, improves on MINET. After being 
offloaded, each task is assigned to the resource that can com-
plete it in the shortest amount of time overall. considering 
the amount of time spent executing the task as well as com-
municating about the task. In other words, it prioritizes the 
time spent communicating about the task over the time spent 
performing the task.

Sun et al. [18] proposed multi-objective task scheduling 
method with the goal of optimizing how much weight is 
given to the offloaded jobs. However, the following restric-
tions apply to this work: First, only an edge server can be 
used to offload jobs in this work. Second, the mobile termi-
nal's energy usage was neglected. The optimization result in 
this work was obtained using the bat method. Since the bat 
algorithm doesn't have a mutation operation, the solutions 
may not be very different from each other.

According to the energy usage of the various imple-
mented locations of the jobs, Hao et  al. [19] suggest a 
method for offloading the mobile device in this study. This 
is done in an effort to conserve energy and account for the 
system load of mobile devices. After determining an initial 
value using the AFCFS method, the "Replace" and "Insert" 
offloading strategies are optimised using an adaptive greedy 
algorithm with the taboo mechanism. This is completed after 
the initial value has been determined. Only the records of 
feasible work schedules that contain the top-n values of mul-
tiple-target functions or those that are modifiable by taboo 
search are still included in these solutions. For cloud-based 
jobs, we continued to employ the same strategy.

In order to move code from mobile devices to the cloud, Tao 
et al. [20] proposed TRADEOFF as a smart data processing 
offloading system that can end up making tradeoff decisions. 
Mobile device storage has been cleared of this code. In order 
to maximise energy savings while still meeting job latency 
requirements, he developed a metric. Tasks are always com-
pleted as rapidly as possible by MINET. This strategy consist-
ently ignores energy consumption, giving it the highest AEC 
score. Given that both methods constantly attempt to assess the 
tradeoff between execution time, and energy use,TRADEOFF 
and IGTMA both have a very stable AEC value. IGTMA con-
siders a variety of goals. The simulation performance of such 
targets is guaranteed by the target function. The value of several 
target functions is also increased by "Replace" and "Insert."

3 � Proposed system

A block diagram of the mobile cloud and mobile edge 
computing architectures optimized with the DBN-MAA 
algorithm is presented in Fig. 1. With a mobile cloud 
architecture, users can access the internet and pull the nec-
essary information from a cloud server using only their 
mobile device and a communication network. The differ-
entiation between the mobile cloud computing (MCC) and 
the mobile edge computing (MEC) is that MEC is utilized 
to process time-sensitive data, whereas MCC is used to 
process non-time-sensitive data.

It is evident in the mobile edge computing architecture 
that the MEC performs its process, which includes SBS 
and MBS, with the help of the central cloud and core net-
work along with Huffman encoding for image compres-
sion. Small Base Stations (SBS) and Macro Base Stations 
(MBS) are vital components of cellular networks that pro-
vide wireless coverage to mobile devices. SBS and MBS 
work together to offer mobile devices seamless wireless 
coverage while preserving network efficiency, availabil-
ity, and quality of service. To increase the coverage area, 
throughput, and data transfer rates of a cellular network, a 
miniature base station called a "small cell" can be installed. 
The use of small cells can lead to significant improvements 
in network capacity, coverage, performance, latency, and 
power consumption, making it a compelling solution for 
wireless communication systems. Macro stations are cel-
lular base stations that transmit and receive radio signals 
via tall antenna towers. A deep belief network, which has 
undirected connections between some layers, is then used 
to classify the data. It's a generative hybrid graphical model 
that uses unsupervised probabilistic deep learning. Then, it 
was optimized with the help of MAA (Markov Approxima-
tion and Algorithm) before being validated to show that it 
performed better in various respects. The Markov Approx-
imation and Algorithm (MAA) is a framework that uti-
lizes a Markov chain representation of the state space to 
approximate high-dimensional dynamic programming 
issues. The MAA approach has been shown to perform 
better in several areas, including computational efficiency, 
flexibility, and so on.

Many people consider MCC essential because it facili-
tates the transition of computational workloads to the 
cloud. Mobile devices serve as the front end, while the 
cloud serves as the back end. The interaction between 
MCC and the cloud is enabled through the use of techno-
logical infrastructures like wireless connections, location-
based tools, and mobility services to ensure a constant 
flow of resources. To get the most out of your mobile 
devices, consider using mobile cloud computing (MCC), 
which allows you to store and process data in a remote 
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server. The tasks are used to store and process data on a 
remote server is data synchronization, Data storage, Data 
processing, security and reliable network connection. Off-
loading the processing of resource-intensive mobile appli-
cations to the cloud is one way that cloud computing can 
boost their performance.

The 5G network is anticipated to produce more data 
than the 4G network as a result of the addition of more 
connected MDs to the network in the future. The primary 
difference between 4 and 5G is latency. While 4G latency 
ranges from 60 to 98 ms, 5G promises latency of less than 
5 ms. Additionally, lower latency promotes improvements 
in other areas, like faster download rates.. Applications 
that are both resource-intensive and time-sensitive are 
putting increasing strain on the MCC system's capacity 
and performance. Due to limited battery life, CPU speed, 
and memory, doctors experience performance issues for 
resource-intensive mobile apps.

Previous studies have recommended architectures 
that bring computer resources closer to end users for the 
ease and effectiveness they provide, as explained above. 
According to the fog architectural design study conducted 
by According to Bonomi et al. in order to achieve low 

latency in Internet of Things (IoT) and big data applica-
tions, delay-sensitive operations should be performed at 
the edge while sending resource-intensive operations to 
the cloud via the core network. Fan and Ansari suggested a 
similar approach to enhance the labour allocation between 
BSs and fog nodes. Patel et al. suggested the Mobile Edge 
Computer (MEC) to put computing resources at cellular 
networks' Access Points (AP) or Base Stations (BS) closer 
to end users (BS).Energy efficiency, close proximity, fast 
reaction time, mobility, and the ability to track a user's 
location are among the MEC's most distinctive features.

As shown in Fig. 1, mobile devices serve as the front 
end of the MEC architecture, with MEC servers in the 
middle and the cloud serving as the back end. All essen-
tial processing and storage capacity is installed at BS or 
AP, which is more convenient for users. Depending on the 
intensity of the signal, each mobile device is assigned a 
BS or AP that is regarded as its "home BS." MEC can help 
relieve network congestion by offloading work, caching 
data, processing it, and delivering services, all of which 
have the potential to reduce bandwidth costs, energy con-
sumption, and latency [20].

Fig. 1   Proposed diagram of 
DBN with MAA
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3.1 � System model

Analyze an MD that has M tasks to do in sequence. These tasks 
can be executed locally or forwarded to one of the nearby MEC 
servers N. Different wireless channels ensure that two wire-
less bases will not collide with one another. Wireless channels 
are used to separate and distinguish between different wireless 
transmissions. They prevent two wireless bases, such as routers 
or access points, from colliding by using different frequencies. 
Three separate binary variables are used to represent task allo-
cation am, bm, n ∈ [0, 1], ∀m ∈ M and ∀n ∈ N

In other words, the |M| tasks could be partitioned into 
the sets |N| and |N|+ 1. As such, we place the following 
limitation on it:

The triple ( am,bm , and cm ), characteristics a computational 
job m. where am is the number of processing unit cycles 
required to finish the task, bm is the number of bits in the data 
used to perform the computation, and cm is the number of 
bits in the data that was generated as a result of the computa-
tion. Here, we assume that the MD has resources like offline 
measurements and call-graph analysis at his disposal in order 
to determine the parameters of interest ( am,bm , and cm ). Offline 
measurements involve collecting data on a device's usage, 
whereas call-graph analysis entails analyzing the sequence of 
function calls made by an application or program on a mobile 
device, that can offer insights into the application's behavior and 
performance and assist developers in identifying and resolving 
any issues. We have analyzed the power requirements and runt-
ime of both on-premises and cloud-based options for coping 
with the computation's overhead.

1.	 The first option is local computing, in which case the 
MD would use its own central processing unit to carry 
out the computation task m. Let MD represent the MD's 
computational power (based on CPU cycles per second). 
The amount of time it takes for a local CPU to com-
plete a batch of tasks, based on a given decision profile 
a =

{
am

}
∈ {0, 1}|M| and �MD , is:

That is where we get our computational oomph.

(1)
am

{
1, if task m processed at local CPU

0, if task m processed at local MEC server

}

bmn

{
1, if task m is assigned MEC server n

0, otherwise

}

(2)am +
∑
n∈N

bm,n = 1 ∀m ∈ M

(3)TMD

(
a,�MD

)
=

∑

m∈M

am
pm

�MD

(4)EMD

(
a,�MD

)
=
(
Υ1�

�
MD + Υ2

)
TMD

(
a,�MD

)

where 
(
Υ1�

�
MD + Υ2

)
 represents the MD's ability to process 

data numerically. For example, the values for can be anywhere 
from two to three, and the values for B1 and B2 will vary with 
the design of the chip being used. The method of measurement 
described in allows for the extraction of values. The MD could 
dynamically scale �MD using DVFS technology, cutting down 
on execution time and power consumption while doing so. In 
this work, we assume that �MD is a real number with values 
in a finite, discrete set � =

{
�min ≤ � ≤ �max

}
 , where �min 

and �max are the min and max CPU frequencies of the MD, 
respectively. Dynamic voltage and frequency scaling (DVFS) 
is an effective method for matching system power consumption 
to the required performance.

2.	 Using MEC offloading, the MD's compute task m is wirelessly 
transmitted to one of the MEC servers, where it is executed 
in the MD's stead. With this kind of computation offloading, 
more effort and resources are needed to send the data used in 
the calculation as input and as output. The maximum amount 
of service that the MD can receive from any given MEC server 
n is finite (CPU cycles per second are the unit of measure-
ment.). The fee for MEC computing services is determined 
by the MD's contract with its mobile carrier. The MD is also 
expected to have a foundational knowledge of the typical 
uplink and downlink data rates before beginning processing 
on an assigned task (indicated by rUL n and rDL n). Because 
it is presumed that data transmission and task processing 
do not overlap or interfere with one another, the uploading, 
downloading and computing, processes are executed consecu-
tively for the sake of simplicity. For a given decision profile, 
b = {bm,n} ∈ {0, 1} |M| ×|N| describes how long it will take for 
a batch of tasks to be computed on MEC server n.

Energy used by the MD for wireless transmission can be 
determined as

where stx the output power and srx the input power are 
indicated.

3.2 � Problem formulation

In this project, we aim to lessen the time it takes to com-
plete tasks and the amount of power needed by the MD. 
Considering the interdependence of MD and MEC servers, 
the time metric can be determined as follows:

(5)Tn(Y) =
∑

m∈M

Bm,n

(
pm

�n

qm

rULn

rm

rDLn

)

(6)EMEC(B) = stx

∑

m∈M

∑

n∈N

Bm,n

qm

rULn
+ srx

∑

m∈M

∑

n∈N

Bm,n

rm

rDLn

(7)T
(
a, b,�MD

)
= max

{
TMD(a,�MD,maxTn(B)

}
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One way to quantify energy use is to use:

However, because xm, {ym, n} and �MD link these 
two goals together, they cannot be improved separately 
or simultaneously. In order to do this, we develop a single 
objective function (or system utility).

where �T , �E ∈ [0, 1] represents the weight that the MD places 
on the execution time and energy usage parameters. The deci-
sion can be made taking into account both the latency and 
energy metrics., with �T and �E reflecting their relative impor-
tance. If the MD is using a latency-sensitive application, it can 
adjust the values of �T → 1 and �E → 1 accordingly. When the 
MD's power is low, it will prioritise conserving energy, so it 
will adjust �T → 1 and �E → 1 accordingly. In order to model 
similar multi objective optimization problems, the weighted 
sum method has been widely employed.

As a final step, we formulate the optimization problem 
as

s.t. Limitation (2),

P1 is NP-hard because it requires solving a mixed-integer non-
linear programming problem. The problems of MINLP are a type 
of optimisation issue in which some variables can only have inte-
ger values and others can have continuous values. Furthermore, 
the optimal solution to this combinatorial optimization problem 
involves choices for both isolated computational tasks and the MD's 
central processing unit. Given the difficulty in computing the exact 
optimal solution, we propose employing the Markov approxima-
tion framework to develop a fast polynomial-approximated method 
for solving problem P1. The fast polynomial-approximated method 
is a technique used to efficiently compute mathematical functions 
such as trigonometric, exponential, and logarithmic functions. The 
method approximates the function using a polynomial, which is 
then evaluated using a specialized algorithm that reduces the num-
ber of arithmetic operations required. The basic idea behind FPA is 
to approximate the PI function with a low degree polynomial that 
can be solved using standard optimisation techniques.

3.3 � Huffman encoding

These Huffman codes are built and stored in a tree structure 
using a greedy algorithm, which results in prefix codes with 
optimal average decode-length. The following lemma charac-
terises Huffman encoding. A greedy algorithm is a technique of 
answering issues which determines the best option available at 

(8)E
(
a, b,�MD

)
=
{
EMD(a,�MD,EMEC(B)

}

(9)U
(
a, b,�MD

)
= �TT

(
a, b,�MD

)
+ �EE

(
a, b,�MD

)

var ∶ �MD ∈ Ψ,

am, bm,n ∈ {0, 1},∀m ∈ M,∀n ∈ N.

the time. It doesn't care whether the current best outcome leads 
to the overall best outcome. This algorithm is based on the prin-
ciple of making the best decision possible at each step without 
regards for future consequences or general optimization.

Lemma 1  The entropy of a set of characters, P, is denoted 
by H(M) ≤ CL(M) ≤ H(M) + 1 , the average code length of 
Huffman codes being CL(M) , and the frequency distribution 
of those codes being H(M).

3.3.1 � Encoding using Run‑length Huffman (RLH)

Code length and entropy In RLH, we use Run-length encoding 
(RLE) to determine the distribution of characters. The size of a 
Run-length Huffman (RLH) code depends on several factors, 
including the input data and the encoding scheme used. The RLH 
encoding scheme is used to optimise the encoding scheme and 
achieve higher compression ratios by analyzing the frequency of 
occurrence of runs of repeated values. This means that the dis-
tribution of PRLH characters is a derivative of the distribution of 
P. The RLH entropy is denoted by the letter H

(
MRLH

)
≤ H(M) . 

When coupled with the first lemma, we get:

As a matter of fact, the code is significantly shorter when 
put to use. Length-wise, RLH codes tend to be more sub-
stantial than Elias'.

All encoding techniques theoretically require at least O(t) 
time for Q(g) ∈ ℝ

t . Iterative learning hierarchies (ILCs) are 
preferable to RLH because a second pass over Q(g) is not 
required prior to code assignment. Here we propose a sam-
pling method that, while increasing average code-length 
slightly, helps mitigate the additional burden RLH imposes. 
It employs a run-length compression method similar to that 
of RLH. The Run-length Huffman (RLH) encoding and the 
run-length compression method are two approaches that 
efficiently compress data containing long runs of repeated 
values. In the run-length compression method, consecutive 
repeated values are substituted with a count of the num-
ber of times they appear in a row. Similarly, RLH encoding 
compresses data with long runs of repeated values by group-
ing consecutive repeated values into runs and assigning a 
variable-length code to each run.

3.3.2 � SH encoding (Sample Huffman)

Entropy and code length Let M =
{
m1m2m3, ..,ms

}
 denote 

the original quantized gradient's probability distribution and 

(10)CL
(
MRLH

)
≤ H

(
MRLH

)
+ 1 ≤ H(M) + 1 ≤ CL(M)
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M� =
{
m

�

1m
�

2m3
�,…m

�

s

}
 the sample size S. The entropy 

and average code-length of SH are then as follows:

where 
{
l1, l2,… , lk

}
 denotes the character code word lengths 

with distribution M′ . We get CL
(
M�

)
≤ H

(
M�

)
+ 1 from 

Lemma 1 because we're using Huffman coding on M′ . We 
have |S| → T  and 

|||m
′

i
||| → mi , so we have H

(
M�

)
→ H(M) 

and thus CL
(
M�

)
→ CL(M) , which is the average Huffman 

code-length.
Huffman coding is inefficient for sparse vectors because it 

encodes each character. Developing a sparse encoding method 
is essential. Sparse encoding is a crucial technique in Huffman 
coding as it allows for the efficient encoding of symbols that 
appear less frequently in the input data. In Huffman coding, 
each symbol is allocated a variable-length code based on its 
frequency of occurrence, with more frequent symbols allocated 
shorter codes and less frequent symbols assigned longer codes.

3.3.3 � Huffman Sample with Minimal Information (SHS)

Entropy and the Best Possible Code  The probability distribu-
tion of SHS s + � characters of length cap � is given for a set 
s + 1 of distribution of characters M� =

{
m1,m2,m3,…ms

}
 , 

where P is the likelihood that the character will actually 
exist.

Therefore, the entropy is

Given the status of � → ∞ , we obtain

When � → ∞ , the best possible SHS codes are gener-
ated. The following lemma is derived from the preceding 
definitions.

Lemma 2  Specifically, we have for SHS with length cap 𝛾 > 0

to ensure that the average SHS code length achieved by a 
length cap is within Δ + 1 bits of CL

(
M∞

)
.

(11)H
(
M�

)
= −

∑s

i=1
m

�

ilog
(
m

�

i

)

(12)CL
(
M�

)
= −

∑s

i=1
m

�

ili,

(13)
M� =

{
m1,m2,m3,…ms

}
∪
{
mi(1 − m)|i ∈ [1|� − 1]

}
∪ {m�}

(14)
H
(
m�

)
= −m� log(m� ) −

∑s

i=1
mi log

(
mi

)
−
∑�−1

i=1
(1 − m)mi log

(
mi(1 − m)

)

(15)

H
(
M∞

)
= −

∑s

i=1
mi log

(
mi

)
− m log(1 − m) − m

log(m)

1 − m

(16)
H
(
M�

)
= H

(
M∞

)
+
(
m�+1logm

)
∕(1 − m) + m� log(1 − m)

Lemma 3  We have SHS with length can 𝛾 > 0.

Average and length-constrained character set entropy 
The length of Huffman codes are denoted by CL

(
M�

)
 and 

H
(
M�

)
 , respectively; and

3.3.4 � Time complexity analysis

Parallel implementation  This study's encoders can be paral-
lelized. If we have n workers, we can assign one to each of 
the n sub vectors that make up the gradient for RLH, and then 
calculate the frequencies of those sub vectors. We reduce the 
frequency of each partitioned sequence's length while enhanc-
ing the frequency of the merged size by one when dealing with 
partitioned sequences. If a run length sequence is split up into 
multiple parts, we can merge them together once they're fin-
ished. Let ce

i
 represent the total length of the run of characters 

ith at the termination of the ib
i+1

 partition for alli ∈ [0, n − 1] . It 
is assumed for all h that the run length order of the character 
(i + 1)th at the start of the i ∈ [1, n] divider has lengthcb

i+1
 . The 

le
i
, ib
i+1

 frequency is lowered by one and the K sequence is raised 
by one to represent the characterce

i
= cb

i+1
 . le

i
+ ib

i+1
 seconds are 

needed to locate the frequencies. It is possible to sample SH and 
SHS in n subsets over O(d∕n) time. Huffman tree construction 
for s characters takes log(s) time when done in parallel. The 
final tree has the letters 

(
d�∕n

)
 for RLH, O(logk) for SH, and 

O(log(s + �)) for SHS. The highly parallel nature of accelera-
tors like GPUs and FPGAs can be exploited by running these 
algorithms in parallel.

3.4 � Markov approximation and algorithm design

Combinatorial network optimization problems can be 
solved using the Markov approximation, a method that 
was very recently proposed. The Markov approximation 
method is a mathematical method for simplifying compli-
cated stochastic processes. The Markov approximation is 
utilised in a number of fields, including financing, biology, 
physics, and technology, to model various stochastic pro-
cesses such as particle behaviour in a gas, fluctuations in 
stock prices in financial markets, and the spread of infec-
tious illnesses.

The Markov approximation technique is an effective 
strategy for solving combinatorial network optimiza-
tion problems that assume network traffic can be repre-
sented as a Markov process. Log-sumexp approxima-
tion and the construction of Markov chains tailored to a 

(17)H
(
m�

)
+ 1 = H

(
M∞

)
+ Δ + 1 ≤ CL

(
M∞

)
+ Δ + 1

(18)Δ = M� log(1 − m) +
(
m�+1logm

)
)∕(1 − m).
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specific problem yield efficient parallel implementations 
for approximating problem resolution in this context. It has 
been shown that the Markov approximation is both optimal 
and converging.

3.4.1 � Approximation using the logarithm of the squared 
expense

Let f = {a, b, ψMD} ∈ F represent a workable answer to 
problem S1, with F representing the complete set of answers 
that can be found within the given constraints. Problem S1 
is represented by min

f∈F
Wf  if we define utility Wf  as the objec-

tive function of the system for a specific configuration f. 
Hence, S1's MWIS problem is equivalent to the following:

where pf is the probability that state f occurs and f is the 
percentage of time that state f occurs. The challenge here is 
to find the lightest possible weighted configuration, with Wf  
standing in for 'f's's relative importance. The log-sum-exp 
approximation of min

f∈F
Wf  , using the Markov approximation 

framework, provides

where  � is a positive constant influencing the accuracy of 
the approximation. The following information identifies the 
approximation's accuracy: where |F| is the size of the set F:

The approximation gap decreases toward zero as � → ∞ 
increases, and eventually reaches unity. As shown in, the 
following problem can be solved using the log-sum-exp 
approximation in (13) P2

By satisfying the Karush–Kuhn–Tucker (KKT) conditions, 
we can find the best answer to S2 since it is a convex problem.

(19)min
s≥0

=
∑

f∈F

sfWf

(20)s.t
∑

f∈F

sf = 1

(21)Wmin ≈ −
1

�
log

(
∑

f∈F

exp
(
−�Wx

)
)

(22)

min
f∈F

Wf −
1

�
log|F| ≤ −

1

�
log

(
∑

f∈F

exp
(
−�Wx

)
)

≤ min
f∈F

Wf

(23)
S2 ∶ min

p≥0

∑
f∈F

pfWf +
1

�

∑
f∈F

pf log pf

s.t
∑
f∈F

pf = 1

However, due to the vastness of the problem's solu-
tion space, it is unusual for someone to have complete 
knowledge of F, which is required for a direct solution 
of S2. Taking turns among various set ups in accordance 
with their subsections Taking a random sample from the 
distribution s * f in the configuration space F is a viable 
strategy for addressing both Problems S2 and S1 (24). It 
is challenging to design a Markov chain that is specific 
to a given problem, achieves stationary distribution s * f, 
and permits concurrent construction of the |M| tasks. one 
of the most difficult aspects is determining an appropri-
ate set of states that precisely reflects the system under 
consideration.

3.5 � Classification of deep belief network

3.5.1 � Restricted Boltzmann Machine (RBN)

Two-layer stochastic networks are referred to as RBM 
in abbreviation. The two-layer stochastic networks are 
significant because they are capable of learning complex 
nonlinear relationships within high-dimensional data and 
can generalize effectively to new data. The visible layer 
is vv and the concealed layer is h. There are four nodes 
on the visible layer and three on the hidden layer of the 
Restricted Belief network seen in Fig. 2. The RBM net-
work differs from the Boltzmann network in that nodes 
in a single layer have any impact on each other. RBMs 
are commonly used in reduction of dimensionality, learn-
ing features, and shared filtering, whereas BMs are used 
to model complex data distributions such as image and 
speech data.

A random value of 1 or 0 is given to each node in 
the RBM's evolution, based on the following posterior 
probability:

From a macro perspective, an RBM can be described in 
terms of its energy function and its probability distribution.

Energy Function:

Probability Distribution:

(24)sf
∗ =

exp
�
−�Wf

�

∑
f �∈F exp

�
−�Wf �

� ,∀f ∈ F

(25)
p
(
hi = 1|v

)
= f

(
bi + wiv

)

p
(
vi = 1∕h

)
= f

(
ai +WIh

)

(26)E(v, h) = −
∑

i∈v
aivi −

∑
j∈h

bjhj −
∑

i,j
vihjwij

(27)p(v, h) =
1

z
e−E(v,h)
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The edge distribution of the visible layer can be calcu-
lated using this method.

(1)	 Applying the gradient method, we take log p(v, �) to 
be the likelihood function, which does not alter the 
monotonicity. To improve our learning efficiency, we 
make adjustments to the parameters along the gradient 
� log p(v,�)

��
 . Here are the specifics of the plan:

(2)	 Hinton proposes the Contrastive Divergence: CD algo-
rithm in 2002. It's a quick way to learn RBM, and the 
process is laid out in the text.

4 � Result and analysis

The presented system model and algorithm will be used as 
the basis for the numerical experiments in this section. All 
of the algorithms and tests are executed on a Windows 10 
machine with 8 GB of RAM and MATLAB 2021a. Edge 
servers, located in the geographic centre of the service 
region, are part of the simulation scenario alongside a few 
mobile endpoints. There is a completely random distribu-
tion of mobile devices throughout the coverage area. Please 
take note that the task requirements, including the data size 
and required CPU cycles, are generated at random, making 
the assignment specific to each mobile device (400, 100). 
Computing power (F) of the edge servers is 40 GHz, while 
that of the mobile device is only 0.5–1 GHz. We have Po I 
set to transmit data at 100 mW and Pe I waiting for the result 
at 10 mW. The base price for the edge server is 1, and the 
baseline charging resource is 1 GHz Table 1.

(28)P(v) =
1

z

∑
h
e−E(v,h)

(29)

�(n + 1) = �(n) + a ∗
(

� log p(v,�)

��

)
, � ∈ {W, a, b}

−
� log p(v,Wij)

�Wij

= Ev

[
p
(
hi|v

)]
− v

(i)

j
∗ f

(
wi ∗ v(i) + bi

)

−
� log (v,bi)

�bi
= Ev

[
p
(
hi|v

)
∗ vj

]
− f

(
wi ∗ v(i)

)

−
� log p(v,aj)

�aj
= Ev

[
p
(
hi|v

)
∗ vj

]
− v

(i)

j

4.1 � Average energy consumption

Average Energy consumption �(X) =
∑

(xi−�)2

N−1

Table  1 and Fig.  3 compare the average amount of 
energy used by the DBN-MAA method to that of other 
approaches. Compared to other methods, the suggested 
method uses a very small amount of energy. For example, 
at the 10th node, the DBN-MAA method consumes only 
2.134 J while the other techniques like AFCFS, MINET, 
TRADEOFF, and IGTMA consume 7.527  J, 6.489  J, 
5.489 J, and 3.946 J, respectively. Similarly, at the 70th 
node, the DBN-MAA method consumes only 3.578 J while 
the other techniques like AFCFS, MINET, TRADEOFF, 
and IGTMA consume 8.108 J, 7.487 J, 6.319 J, and 5.298 J 
of energy, respectively. This proves that compared to other 
methods, the suggested method uses a very small amount 
of energy and shows higher performance.

4.2 � System utility

The utility of the DBN-MAA method is compared to certain other 
methodologies in Table 2 and Fig. 4. The DBN-MAA algorithm 
incorporates the features of two influential algorithms: deep belief 

� = mean(x)

Fig. 2   A example of restricted 
Boltzmann machine

Table 1   Average energy consumption of DBN-MAA Method with 
existing system

No of 
Nodes

AFCFS MINET TRADE-
OFF

IGTMA DBN-MAA

10 7.527 6.489 5.489 3.946 2.134
20 7.628 6.673 5.618 4.247 2.478
30 7.727 6.827 5.829 4.578 2.687
40 7.826 6.926 5.916 4.729 2.867
50 7.927 7.102 6.099 4.9176 3.098
60 8.025 7.278 6.278 5.190 3.168
70 8.108 7.487 6.319 5.298 3.578
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networks (DBNs) and the Markov approximation algorithm 
(MAA). DBNs are neural networks that have been developed to 
extract complex features from high-dimensional data, whereas 
MAA clarifies complicated stochastic procedures by considering 

that the future state is solely determined by the current state. When 
compared to other methods, the suggested method performs well. 
For example, with 100 data points from a dataset, the DBN-MAA 
method has a system utility of 44.26% while the other techniques 
like AFCFS, MINET, TRADEOFF, and IGTMA have 25.56%, 
31.22%, 35.29%, and 39.15% of system utility, respectively. Simi-
larly, with 700 data points, the DBN-MAA method has a latency 
of 50.175% while the other techniques like AFCFS, MINET, 
TRADEOFF, and IGTMA have 30.175%, 34.95%, 38.74%, and 
43.87%, respectively. These findings demonstrate the superiority 
of the proposed method over its rivals. Time Lag, or Latency, 4.3

The latency comparison of the DBN-MAA method to other 
existing techniques is described in Table 3 and Fig. 5. The proposed 
method consumes very little energy compared to the other meth-
ods. For example, at the 10th node, the DBN-MAA method has 

Fig. 3   Average energy 
consumption for DBN-MAA 
Method with existing system

Table 2   System utility for DBN-MAA method with existing system

No of  iterations AFCFS MINET TRADEOFF IGTMA DBN-MAA

100 25.56 31.22 35.29 39.15 44.26
200 26.41 31.62 35.82 40.28 45.28
300 26.85 32.78 36.43 41.38 46.18
400 27.11 33.17 36.75 41.93 47.82
500 27.89 33.82 37.11 42.18 48.56
600 28.45 34.38 37.95 43.28 49.27
700 30.17 34.95 38.74 43. 87 50.17

Fig. 4   System utility for DBN-
MAA method with existing 
system
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a latency of only 14.32 s while the other techniques like AFCFS, 
MINET, TRADEOFF, and IGTMA have 123.46 s, 85.36 s, 
42.51 s, and 25.42 s of latency, respectively. Similarly, at the 70th 
node, the DBN-MAA method has a latency of 56.89 s while the 
other techniques like AFCFS, MINET, TRADEOFF, and IGTMA 
have 183.22 s, 138.57 s, 91.22 s, and 79.78 s of latency, respec-
tively. This proves that the proposed method has very low latency 
compared to the other techniques and shows higher performance.

4.3 � Throughput

AFCFS, MINET, TRADEOFF, IGTMA, and DBN-MAA 
methods are evaluated based on the number of nodes for 
throughput analysis in Table 4 and Fig. 6. When 100 nodes are 
employed, the DBN-MAA's throughput has been measured as 
1053.67kbps. The network throughput of 925.79 Kbps, 958.33 
Kbps, 992.23 Kbps, and 1013.41 kbps for AFCFS, MINET, 
TRADEOFF, and IGTMA methods, respectively. Similarly, at 

700 nodes, the DBN-MAA method has a throughput of 1118.67 
kbps while it is 957.66 kbps, 993.32 kbps, 1015.42 kbps, and 
1049.69 kbps for AFCFS, MINET, TRADEOFF, and IGTMA, 
respectively. According to the study, DBN-MAA exceeds the 
other methods in terms of effectiveness (Fig. 7).

4.4 � Time complexity

The time complexity of the DBN-MAA model is shown 
in Fig. 6 and Table 5. Bluetooth is currently used by the 
majority of smart devices to connect smartphones, and this 
connection uses far less energy than 3G/LTE or Wi-Fi does. 
The existing AFCFS, MINET, TRADEOFF, and IGTMA 
systems take longer time than the proposed DBN-MAA 
system. For 100 data points from the dataset, the proposed 
method takes 22.32 s while the other methods like AFCFS, 
MINET, TRADEOFF, and IGTMA take 39.28 s, 34.51 s, 

Table 3   Latency Analysis for DBN-MAA Method with existing sys-
tem (sec)

No of nodes AFCFS MINET TRADEOFF IGTMA DBN-MAA

10 123.46 85.36, 42.51 25.42 14.32
20 135.68 88.27 45.68 35.58 20.76
30 147.84 91.62 57.24 40.91 26.27
40 151.35 93.77 60.27 47.98 32.37
50 171.64 110.36 78.29 62.48 45.55
60 179.58 127.56 86.27 68.68 50.38
70 183.22 138.57 91.22 79.78 56.89

Fig. 5   Latency Analysis for 
DBN-MAA Method with exist-
ing system

Table 4   Throughput Analysis for DBN-MAA Method with existing 
system(kbps)

No of nodes AFCFS MINET TRADEOFF IGTMA DBN-MAA

100 925.79 958.33 992.23 1013.41 1053.67
200 9300.22 965.66 998.79 1019.25 1067.89
300 932.75 971.57 994.24 1023.77 1071.34
400 940.14 979.19 1003.31 1028.31 1079.50
500 943.46 984.75 1004.69 1035.64 1083.39
600 951.68 989.78 1011.69 1043.52 1090.86
700 957.66 993.32 1015.42 1049.69 1118.67
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30.11 s, and 26.13 s, respectively. Similarly, for 700 data 
points, the DBN-MAA method takes only 25.44 s while 
the other methods like AFCFS, MINET, TRADEOFF, 
and IGTMA take 42.87 s, 37.68 s, 33.25 s, and 29.53 s, 
respectively.

4.5 � Accuracy

Both Table 6 and Fig. 8 compare the DBN-MAA method's accu-
racy to that of other popular methods. When compared to alter-
native approaches, the proposed method performs exceptionally 
well. When applied to a sample of 100 data points from a dataset, 

Fig. 6   Throughput Analysis for 
DBN-MAA Method with exist-
ing system

Table 5   Time complexity for DBN-MAA Method with existing system

No of 
data from 
dataset

AFCFS MINET TRADEOFF IGTMA DBN-MAA

100 39.28 34.51 30.11 26.13 22.32
200 40.37 35.44 31.63 26.48 23.69
300 41.23 35.79 31.94 27.44 23.75
400 41.68 34.74 32.54 28.15 22.64
500 40.83 36.16 30.85 28.71 24.44
600 42.33 37.25 32.78 27.73 24.79
700 42.87 37.68 33.25 29.53 25.44

Table 6   Accuracy analysis for DBN-MAA method with existing sys-
tem

No of 
data from 
dataset

AFCFS MINET TRADEOFF IGTMA DBN-MAA

100 75.46 79.84 83.63 88.61 92.64
200 76.25 80.73 84.79 89.32 93.46
300 77.15 81.27 85.53 90.63 94.53
400 78.53 82.37 86.85 91.29 95.32
500 79.27 83.18 87.42 92.14 96.19
600 79.54 83.44 87.77 92.51 97.43
700 80.18 84.19 88.28 93.09 97.87

Fig. 7   Time complexity for 
DBN-MAA Method with exist-
ing system
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the DBN-MAA method achieves an accuracy of 92.64%, while 
the AFCFS method achieves only 75.46% accuracy, the MINET 
method achieves only 79.84% accuracy, and the TRADEOFF 
method achieves only 83.63% accuracy, and the IGTMA method 
achieves only 88.61% accuracy. Comparatively, the DBN-MAA 
method has a latency of 97.87% with 700 data points, while the 
AFCFS method has 80.18%, the MINET method has 84.19%, 
the TRADEOFF method has 88.28%, and the IGTMA method 
has 93.09%. This demonstrates that the proposed method is more 
accurate and efficient than competing methods.

5 � Conclusion

The cloud can alleviate task bottlenecks caused by a lack of com-
puting resources on either the local machine or the cloud by off-
loading tasks to the mobile edge. In this paper, we propose a novel 
scheduling method (deterministic bias network multi-objective 
augmentation, or DBN-MAA) to simultaneously optimise mul-
tiple objectives by fusing the best aspects of immune-based and 
traditional scheduling approaches. The findings of this research 
contribute in three ways. The proposed system model consists 
of various components such as communication and computing 
resources, mobile device energy usage, and work weight. In addi-
tion, the scenario where a mobile device can create multiple jobs 
simultaneously is taken into account. And finally, the evolutionary 
algorithm incorporates both the bat and immune algorithms, so 
that convergence and diversity are both guaranteed. In this paper, 
we investigate computation offloading within the framework of 
mobile edge computing, where a single MD may employ multiple 
MEC nodes. Reducing the MD's energy consumption and task 
execution time requires optimal task assignment and frequency 
scaling. The Markov approximation is used to approximate the 
optimal solution to an NP-hard problem with a small, bounded 
error. Our algorithm is nearly optimal in terms of scalability, 
robustness, and performance, as demonstrated by simulations. 

The advantage of DBN-MAA is, it reduce image data irrelevance 
and redundancy in order to store or transmit data in an efficient 
manner. Its objective is to lower the amount of bits needed to rep-
resent an image. It performs better than exhaustive searching and 
local processing. Many-Markov-approximation (MD) research 
is planned for the future. In this online demonstration, we will 
implement our method (DBN-MAA) by simulating the arrival 
and departure of simulated medical doctors. A real-world mobile 
edge computing testbed can also be used to assess the work's effi-
cacy. The computation offloading model will be further developed 
and improved in subsequent work by taking into account more 
realistic use cases. We'll also look into other potential approaches 
to offloading optimization beyond multi-objective swarm intel-
ligence algorithms.
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