
Vol.:(0123456789)1 3

Mobile Networks and Applications
https://doi.org/10.1007/s11036-023-02221-8

Computation Offloading for Image Compression in Mobile Edge
Computing Using a Deep Belief Network Based on the Markov
Approximation Algorithm

N. Noor Alleema1 · Abhay Chaturvedi2 · Ashok Kumar Nanda3 · P. Joel Josephson4 · Ahmed Mateen Buttar5 ·
Dinesh Komarasamy6

Accepted: 29 June 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
The rising popularity of health-related wearables has increased the demand for computational offloading. Latency, battery
life, and compute capabilities are all areas that could use significant improvement despite the massive expansion of wearable
devices and offloading techniques. There are a number of issues caused by the limited battery life of mobile devices, so it is
essential to conserve power by moving responsibilities for running applications to the cloud. This is especially crucial in situ-
ations where scheduling is being done in a dynamic mobile cloud computing environment. In this piece, we highlight the
fact that most smart wearable devices can pair with smartphones via Bluetooth, and that this connection is significantly more
power-efficient than 3G/LTE or Wi-Fi communication. To be more precise, we investigate the origins of this phenomenon.
New computing technology, Mobile Edge Computing (MEC), may be the answer to capacity and performance problems in
older systems like Mobile Cloud Computing (MCC). Some examples of these problems include excessive latency, a clogged
core network, a lack of quality of experience (QoE), and the wasteful consumption of expensive resources like power and
data transfer. To address these issues in the MEC setting, we introduced a Deep Belief Network (DBN) equipped with a
Markov Approximation Algorithm (MAA). Because of this, a choice could be made that takes into account energy use, time
constraints, and system load. AFCFS, MINET, and trade-off judgments for code offloading are all examples of state-of-the-
art techniques that can be outperformed by this approach (TRADEOFF). Using entropy encoding as a post-processing step
after quantization allows for lossless compression of an image. It allows for a picture to be shown in a way that is both more
effective and requires less space for storage or transmission. Our proposed DBN-MAA reduces energy consumption while
simultaneously increasing the number of completed jobs, as shown by the simulation experiment results.

Keywords  Deep belief network · Markov approximation · Mobile edge computing · Energy efficiency and entropy
encoding

1  Introduction

Mobile devices (MDs) are frequently utilized to gather and
process data because of the growth of IoT technology. These
gadgets are typically designed to be compact, with a meagre

supply of computational power and energy. Concerns about
the excessive energy consumption of mobile devices have
been raised because the processing unit on these devices
may take a long time to execute some computing jobs in
some apps. To overcome the obstacle between the demand

 *	 Ashok Kumar Nanda
	 ashokkumarnanda@yahoo.com;

ashok_kumarnanda78@outlook.com

1	 Department of Information Technology, Vel Tech
Rangarajan Dr. Sagunthala R&D Institute of Science
and Technology, Avadi, Chennai, India

2	 Department of Electronics and Communication Engineering,
GLA University, Mathura, India

3	 Department of CSE, B V Raju Institute of Technology,
Narsapur, Medak, Telangana, India

4	 Department of ECE, Malla Reddy Engineering College,
Hyderabad, Telangana, India

5	 Department of Computer Science, University of Agriculture
Faisalabad, Faisalabad 38000, Pakistan

6	 Department of CSE, Kongu Engineering College,
Perundurai, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s11036-023-02221-8&domain=pdf

	 Mobile Networks and Applications

1 3

for complicated applications and the availability of limited
resources, mobile cloud computing (MCC) is offered. Com-
puting tasks are typically carried out on the central cloud,
which has abundant processing capabilities and huge stor-
age capacity in MCC application scenarios [1]. Using this
technique, MDs were able to handle difficult calculation
tasks with just locally high energy consumption [2]. Usu-
ally, centralized servers are far from MDs. Increased use of
real-time operations and the requirement for low latency for
MCC are consequences of the proliferation of Internet and
5G mobile networks.

The problems have been solved with the establishment
of MEC. Servers at the network's edge are typically located
strategically throughout a mobile ad hoc network (commonly
with the wireless base station in 5G networks). When servers
are located closer to MDs, latency and energy consumption
due to data transmission can be effectively decreased. When
compared to a centralized server cluster, the resources avail-
able on MEC servers are limited. Given that MEC servers
only cover a specific area, this shouldn't be an issue. It's
simple to adjust the capacity to meet the needs of the situ-
ation. There's also the fact that MDs don't always produce
huge computation jobs, so sending them to be processed on
servers regardless of their size is a waste of resources. With
the advent of MEC, MDs have greater flexibility in handling
workloads, both in terms of when and by how much to out-
source computational tasks. The quality of service greatly
fluctuates depending on offloading decisions (QoS). Com-
putation offloading choices, given the above, are an increas-
ingly studied subfield of MEC.

Compression is the process of reducing the amount of
data used to represent a file, image, or video without sacri-
ficing the quality of the original data. Image compression is
the use of data compression to compress digital images. The
primary goal of image compression is to reduce redundancy
and irrelevancy in images so that they can be stored and
transferred more efficiently. When compared to the origi-
nal, the compressed image uses fewer bits. As a result, the
required storage size will be reduced, allowing for maximum
image storage and faster transfer to save time and transmis-
sion bandwidth.

In theory, pictures taken on mobile devices should be able
to be processed using the same algorithms that are used for
other kinds of pictures. However, when directly applied to a
problem, the effectiveness of such algorithms is diminished
due to the many constraints and outside factors. The vast
majority of mobile devices continue to have significantly
less computing power than computers that have been specifi-
cally designed for image compression. They are also pow-
ered by a battery, and the limited energy that is stored in the
battery needs to be conserved so that the device can fulfil
its primary purpose. Image processing on mobile devices
generally faces new challenges brought on by smartphones

in particular. The competitive nature of the market has led to
the development of smartphones with extraordinarily high-
resolution cameras. The presence of a large number of pixels
that need to be processed calls for algorithms that are par-
ticularly efficient. The necessity of living up to the anticipa-
tions of the end users is yet another important non-technical
factor. Users of smartphones have come to anticipate that
their devices will produce photographs and videos of a high
quality, in addition to providing them with prompt access to
processed content.

The motivation behind using compute offloading could be
varied, including saving resources like time, energy, money,
etc. The objective in terms of time is to lessen the lag time
between operations, while the objective in terms of energy
is to cut down on the amount of power consumed. The cost
objective can be seen from both perspectives. One is the
price of sending data, and the other is the price of computing
power at the edge. Some tactics focus solely on one oppo-
nent. As an illustration, while [3] focuses on the time goal,
[4] analyses the energy goal exclusively. Methods like [5]
take into account the existence of two targets. Some studies
take into account three or more targets, but these are rarely
compared to those that focus on just one or two. Therefore,
it's essential to study more than just two targets in depth.

Following the proposal of the computation offloading
model, the optimal strategy for obtaining computation off-
loading decisions must be established. The decisions that
are derived should produce the best possible model outcome
given the constraints. Swarm intelligence is a term used to
describe the collective intelligence behaviour of autonomous
and distributed systems [6]. Further, many academics from
different fields have taken an interest in a specific type of
algorithm called a swarm intelligence algorithm. The given
computation offloading paradigm has been shown to be solv-
able by many studies and applications of swarm intelligence
optimization algorithms [7].

In this article, we will look at an MD that can adjust the
frequency of its central processing unit (CPU) and split up
computational tasks among several MEC servers. To reduce
the time versus energy cost of finishing tasks on mobile
devices, we use optimal control decisions based on job
assignment and CPU frequency. The difficulty of solving
this combinatorial optimization problem makes it NP-hard.
Using this framework, which is derived from the Markov
approximation framework, we were able to develop a nearly
optimal approximation strategy. In a nutshell, this work
mainly contributed these things:

•	 To make the trade-off between latency and energy as
small as possible, it is suggested to use a nonlinear com-
binatorial optimization problem in a multimerger MEC
system that makes use of the job assignment decision and
the ability to scale up computing power.

Mobile Networks and Applications	

1 3

•	 To swiftly address the stated problem, our approxima-
tion strategy takes advantage of the Markov approxi-
mation framework. This strategy can give the issue a
close-to-ideal resolution using a Markov chain and state
changes. Here, we look at the most noteworthy features
of the resulting Markov chain and analyse the method's
performance optimality, approximation gap, and error
robustness.

•	 Our Markov approximation-based strategy is put through
its paces with a wide range of input parameters in a series
of simulations.. Results from computer simulations show
that this algorithm outperforms the best benchmark algo-
rithms and can produce results that are competitive with
or better than the benchmarks.

The remaining sections of this paper are organised as
follows. In Part 2, we'll discuss some related literature.
Section 3 introduces the algorithm, based on the Markov
Approximation Algorithm, that will be used to construct
the Deep Belief Network (DBN) and the system model
(MAA). In Section 4, we contrast the experimental outcomes
achieved by HIBSA with those achieved by other algorithms.
These contrasts show how much better HIBSA is than its
rivals. In Section 5 we see the final results.

2 � Literature survey

Zhang et al. [8] The proposed process of assigning jobs
to edge servers with enough resources in accordance with
specific offloading policies is referred to as task offloading.
These rules define how effectively the MEC can compute as
well as its efficiency. Computing migration or task offload-
ing are other names for this practise. High quality of service
(QoS) is attained by sending compute-incentivized tasks to
MEC servers, like face recognition and video optimization.
Mobile Edge Computing (MEC) servers can provide high
quality of service (QoS) by processing compute-intensive
tasks. This is because MEC servers are located closer to
end-users, reducing latency and network congestion. Task
offloading issues have piqued scholars' interests greatly in
recent years.

A support vector machine-based offloading algorithm was
put forth by Wu et al. [9]. (SVM). Applying a weight allo-
cation strategy to the process of dismantling a task into its
component subtasks constitutes the first step of the method
that has been suggested. The next thing that needs to be
done is to determine whether or not each individual subtask
is going to be completed in-house or through outsourcing.
This is a very important step that cannot be skipped.

In Youet al. [10], the authors investigated a problem
with minimising energy consumption in multi-user MEC
networks, where the problem was constrained by latency.

They devised a method for the provisioning of resources
that ended up saving a significant amount of energy over the
course of the project. In addition, we present a novel strat-
egy for dealing with the difficulties brought on by mobile
computing's restricted access to power sources by integrat-
ing wireless power transfer (WPT) into mobile embedded
computing.

To minimize power consumption and keep latency con-
straints, Cao et al. [11] described a cooperative optimization
of computing and communication resource provisioning in
MEC. They concluded that the cooperative method not only
greatly improved performance but was also significantly
more energy efficient than other methods that did not use
cooperative design. Several previous studies have made the
case for the MEC's techniques being energy efficient.

To lower users' overall energy consumption, Sardellitti
et al. [12] created an adaptive strategies focused on succeed-
ing convex approximation techniques. The previous work,
on the other hand, exclusively considered the circumstance
where an MD is only connected to a single edge server. This
diversity can be used to give MDs more offloading options
and the right amount of resource capacity in future mobile
networks, keeping service latency to a minimum while giv-
ing users a good experience.

Jang et al. [13] modified the offloading ratios of multiple
vehicles in order to decrease their collective energy foot-
print. This was done with the consideration that the nature
of the communication landscape is in a state of constant
change. The proposed energy-saving offloading method
does considerably cut down on the vehicle's overall energy
consumption; however, it does not account for the energy
that is required to process data at the computing node. Con-
sequently, the overall energy consumption of the vehicle
remains relatively unchanged.

Deng et al. [14] outlined an original offloading system
as a means of developing mobile services with offloading
decisions that are reliable. This system takes into account
the interdependent relationships that exist between the indi-
vidual services that make up its components. Its goal is to
reduce the amount of time needed to complete tasks and the
amount of power that mobile devices require. The challenge
of compute offloading in a single-server MEC system is the
primary focus of the research projects that have been listed
above.

Zhang et al. [15] conducted research on the process of
computation offloading within a distributed MEC network
that contained multiple edge servers. In this configuration,
Internet of Things (IoT) devices were responsible for the
generation of computational work that included variable
requirements and was then offloaded to MEC servers to be
processed. This work should, in the end, result in Internet
of Things devices that have a lower power consumption and
a higher rate of task completion.

	 Mobile Networks and Applications

1 3

In a decentralized IoT network, Anajemba et al. [16] use a
collaborative offloading strategy for multi-access MEC that
relies on the inefficient convergent computation offload-
ing algorithm (LSCCOA). On the other hand, none of the
methods took into account how important it was to transfer
responsibilities from one person to another. When it comes
to the importance of various activities, customers place
varying amounts of weight on different pursuits.

The MET algorithm Li et al. [17] also known as MET
Comm in the literature, improves on MINET. After being
offloaded, each task is assigned to the resource that can com-
plete it in the shortest amount of time overall. considering
the amount of time spent executing the task as well as com-
municating about the task. In other words, it prioritizes the
time spent communicating about the task over the time spent
performing the task.

Sun et al. [18] proposed multi-objective task scheduling
method with the goal of optimizing how much weight is
given to the offloaded jobs. However, the following restric-
tions apply to this work: First, only an edge server can be
used to offload jobs in this work. Second, the mobile termi-
nal's energy usage was neglected. The optimization result in
this work was obtained using the bat method. Since the bat
algorithm doesn't have a mutation operation, the solutions
may not be very different from each other.

According to the energy usage of the various imple-
mented locations of the jobs, Hao et al. [19] suggest a
method for offloading the mobile device in this study. This
is done in an effort to conserve energy and account for the
system load of mobile devices. After determining an initial
value using the AFCFS method, the "Replace" and "Insert"
offloading strategies are optimised using an adaptive greedy
algorithm with the taboo mechanism. This is completed after
the initial value has been determined. Only the records of
feasible work schedules that contain the top-n values of mul-
tiple-target functions or those that are modifiable by taboo
search are still included in these solutions. For cloud-based
jobs, we continued to employ the same strategy.

In order to move code from mobile devices to the cloud, Tao
et al. [20] proposed TRADEOFF as a smart data processing
offloading system that can end up making tradeoff decisions.
Mobile device storage has been cleared of this code. In order
to maximise energy savings while still meeting job latency
requirements, he developed a metric. Tasks are always com-
pleted as rapidly as possible by MINET. This strategy consist-
ently ignores energy consumption, giving it the highest AEC
score. Given that both methods constantly attempt to assess the
tradeoff between execution time, and energy use,TRADEOFF
and IGTMA both have a very stable AEC value. IGTMA con-
siders a variety of goals. The simulation performance of such
targets is guaranteed by the target function. The value of several
target functions is also increased by "Replace" and "Insert."

3 � Proposed system

A block diagram of the mobile cloud and mobile edge
computing architectures optimized with the DBN-MAA
algorithm is presented in Fig. 1. With a mobile cloud
architecture, users can access the internet and pull the nec-
essary information from a cloud server using only their
mobile device and a communication network. The differ-
entiation between the mobile cloud computing (MCC) and
the mobile edge computing (MEC) is that MEC is utilized
to process time-sensitive data, whereas MCC is used to
process non-time-sensitive data.

It is evident in the mobile edge computing architecture
that the MEC performs its process, which includes SBS
and MBS, with the help of the central cloud and core net-
work along with Huffman encoding for image compres-
sion. Small Base Stations (SBS) and Macro Base Stations
(MBS) are vital components of cellular networks that pro-
vide wireless coverage to mobile devices. SBS and MBS
work together to offer mobile devices seamless wireless
coverage while preserving network efficiency, availabil-
ity, and quality of service. To increase the coverage area,
throughput, and data transfer rates of a cellular network, a
miniature base station called a "small cell" can be installed.
The use of small cells can lead to significant improvements
in network capacity, coverage, performance, latency, and
power consumption, making it a compelling solution for
wireless communication systems. Macro stations are cel-
lular base stations that transmit and receive radio signals
via tall antenna towers. A deep belief network, which has
undirected connections between some layers, is then used
to classify the data. It's a generative hybrid graphical model
that uses unsupervised probabilistic deep learning. Then, it
was optimized with the help of MAA (Markov Approxima-
tion and Algorithm) before being validated to show that it
performed better in various respects. The Markov Approx-
imation and Algorithm (MAA) is a framework that uti-
lizes a Markov chain representation of the state space to
approximate high-dimensional dynamic programming
issues. The MAA approach has been shown to perform
better in several areas, including computational efficiency,
flexibility, and so on.

Many people consider MCC essential because it facili-
tates the transition of computational workloads to the
cloud. Mobile devices serve as the front end, while the
cloud serves as the back end. The interaction between
MCC and the cloud is enabled through the use of techno-
logical infrastructures like wireless connections, location-
based tools, and mobility services to ensure a constant
flow of resources. To get the most out of your mobile
devices, consider using mobile cloud computing (MCC),
which allows you to store and process data in a remote

Mobile Networks and Applications	

1 3

server. The tasks are used to store and process data on a
remote server is data synchronization, Data storage, Data
processing, security and reliable network connection. Off-
loading the processing of resource-intensive mobile appli-
cations to the cloud is one way that cloud computing can
boost their performance.

The 5G network is anticipated to produce more data
than the 4G network as a result of the addition of more
connected MDs to the network in the future. The primary
difference between 4 and 5G is latency. While 4G latency
ranges from 60 to 98 ms, 5G promises latency of less than
5 ms. Additionally, lower latency promotes improvements
in other areas, like faster download rates.. Applications
that are both resource-intensive and time-sensitive are
putting increasing strain on the MCC system's capacity
and performance. Due to limited battery life, CPU speed,
and memory, doctors experience performance issues for
resource-intensive mobile apps.

Previous studies have recommended architectures
that bring computer resources closer to end users for the
ease and effectiveness they provide, as explained above.
According to the fog architectural design study conducted
by According to Bonomi et al. in order to achieve low

latency in Internet of Things (IoT) and big data applica-
tions, delay-sensitive operations should be performed at
the edge while sending resource-intensive operations to
the cloud via the core network. Fan and Ansari suggested a
similar approach to enhance the labour allocation between
BSs and fog nodes. Patel et al. suggested the Mobile Edge
Computer (MEC) to put computing resources at cellular
networks' Access Points (AP) or Base Stations (BS) closer
to end users (BS).Energy efficiency, close proximity, fast
reaction time, mobility, and the ability to track a user's
location are among the MEC's most distinctive features.

As shown in Fig. 1, mobile devices serve as the front
end of the MEC architecture, with MEC servers in the
middle and the cloud serving as the back end. All essen-
tial processing and storage capacity is installed at BS or
AP, which is more convenient for users. Depending on the
intensity of the signal, each mobile device is assigned a
BS or AP that is regarded as its "home BS." MEC can help
relieve network congestion by offloading work, caching
data, processing it, and delivering services, all of which
have the potential to reduce bandwidth costs, energy con-
sumption, and latency [20].

Fig. 1   Proposed diagram of
DBN with MAA

	 Mobile Networks and Applications

1 3

3.1 � System model

Analyze an MD that has M tasks to do in sequence. These tasks
can be executed locally or forwarded to one of the nearby MEC
servers N. Different wireless channels ensure that two wire-
less bases will not collide with one another. Wireless channels
are used to separate and distinguish between different wireless
transmissions. They prevent two wireless bases, such as routers
or access points, from colliding by using different frequencies.
Three separate binary variables are used to represent task allo-
cation am, bm, n ∈ [0, 1], ∀m ∈ M and ∀n ∈ N

In other words, the |M| tasks could be partitioned into
the sets |N| and |N|+ 1. As such, we place the following
limitation on it:

The triple ( am,bm , and cm ), characteristics a computational
job m. where am is the number of processing unit cycles
required to finish the task, bm is the number of bits in the data
used to perform the computation, and cm is the number of
bits in the data that was generated as a result of the computa-
tion. Here, we assume that the MD has resources like offline
measurements and call-graph analysis at his disposal in order
to determine the parameters of interest ( am,bm , and cm ). Offline
measurements involve collecting data on a device's usage,
whereas call-graph analysis entails analyzing the sequence of
function calls made by an application or program on a mobile
device, that can offer insights into the application's behavior and
performance and assist developers in identifying and resolving
any issues. We have analyzed the power requirements and runt-
ime of both on-premises and cloud-based options for coping
with the computation's overhead.

1.	 The first option is local computing, in which case the
MD would use its own central processing unit to carry
out the computation task m. Let MD represent the MD's
computational power (based on CPU cycles per second).
The amount of time it takes for a local CPU to com-
plete a batch of tasks, based on a given decision profile
a =

{
am

}
∈ {0, 1}|M| and �MD , is:

That is where we get our computational oomph.

(1)
am

{
1, if task m processed at local CPU

0, if task m processed at local MEC server

}

bmn

{
1, if task m is assigned MEC server n

0, otherwise

}

(2)am +
∑
n∈N

bm,n = 1 ∀m ∈ M

(3)TMD

(
a,�MD

)
=

∑

m∈M

am
pm

�MD

(4)EMD

(
a,�MD

)
=
(
Υ1�

�
MD + Υ2

)
TMD

(
a,�MD

)

where
(
Υ1�

�
MD + Υ2

)
 represents the MD's ability to process

data numerically. For example, the values for can be anywhere
from two to three, and the values for B1 and B2 will vary with
the design of the chip being used. The method of measurement
described in allows for the extraction of values. The MD could
dynamically scale �MD using DVFS technology, cutting down
on execution time and power consumption while doing so. In
this work, we assume that �MD is a real number with values
in a finite, discrete set � =

{
�min ≤ � ≤ �max

}
 , where �min

and �max are the min and max CPU frequencies of the MD,
respectively. Dynamic voltage and frequency scaling (DVFS)
is an effective method for matching system power consumption
to the required performance.

2.	 Using MEC offloading, the MD's compute task m is wirelessly
transmitted to one of the MEC servers, where it is executed
in the MD's stead. With this kind of computation offloading,
more effort and resources are needed to send the data used in
the calculation as input and as output. The maximum amount
of service that the MD can receive from any given MEC server
n is finite (CPU cycles per second are the unit of measure-
ment.). The fee for MEC computing services is determined
by the MD's contract with its mobile carrier. The MD is also
expected to have a foundational knowledge of the typical
uplink and downlink data rates before beginning processing
on an assigned task (indicated by rUL n and rDL n). Because
it is presumed that data transmission and task processing
do not overlap or interfere with one another, the uploading,
downloading and computing, processes are executed consecu-
tively for the sake of simplicity. For a given decision profile,
b = {bm,n} ∈ {0, 1} |M| ×|N| describes how long it will take for
a batch of tasks to be computed on MEC server n.

Energy used by the MD for wireless transmission can be
determined as

where stx the output power and srx the input power are
indicated.

3.2 � Problem formulation

In this project, we aim to lessen the time it takes to com-
plete tasks and the amount of power needed by the MD.
Considering the interdependence of MD and MEC servers,
the time metric can be determined as follows:

(5)Tn(Y) =
∑

m∈M

Bm,n

(
pm

�n

qm

rULn

rm

rDLn

)

(6)EMEC(B) = stx

∑

m∈M

∑

n∈N

Bm,n

qm

rULn
+ srx

∑

m∈M

∑

n∈N

Bm,n

rm

rDLn

(7)T
(
a, b,�MD

)
= max

{
TMD(a,�MD,maxTn(B)

}

Mobile Networks and Applications	

1 3

One way to quantify energy use is to use:

However, because xm, {ym, n} and �MD link these
two goals together, they cannot be improved separately
or simultaneously. In order to do this, we develop a single
objective function (or system utility).

where �T , �E ∈ [0, 1] represents the weight that the MD places
on the execution time and energy usage parameters. The deci-
sion can be made taking into account both the latency and
energy metrics., with �T and �E reflecting their relative impor-
tance. If the MD is using a latency-sensitive application, it can
adjust the values of �T → 1 and �E → 1 accordingly. When the
MD's power is low, it will prioritise conserving energy, so it
will adjust �T → 1 and �E → 1 accordingly. In order to model
similar multi objective optimization problems, the weighted
sum method has been widely employed.

As a final step, we formulate the optimization problem
as

s.t. Limitation (2),

P1 is NP-hard because it requires solving a mixed-integer non-
linear programming problem. The problems of MINLP are a type
of optimisation issue in which some variables can only have inte-
ger values and others can have continuous values. Furthermore,
the optimal solution to this combinatorial optimization problem
involves choices for both isolated computational tasks and the MD's
central processing unit. Given the difficulty in computing the exact
optimal solution, we propose employing the Markov approxima-
tion framework to develop a fast polynomial-approximated method
for solving problem P1. The fast polynomial-approximated method
is a technique used to efficiently compute mathematical functions
such as trigonometric, exponential, and logarithmic functions. The
method approximates the function using a polynomial, which is
then evaluated using a specialized algorithm that reduces the num-
ber of arithmetic operations required. The basic idea behind FPA is
to approximate the PI function with a low degree polynomial that
can be solved using standard optimisation techniques.

3.3 � Huffman encoding

These Huffman codes are built and stored in a tree structure
using a greedy algorithm, which results in prefix codes with
optimal average decode-length. The following lemma charac-
terises Huffman encoding. A greedy algorithm is a technique of
answering issues which determines the best option available at

(8)E
(
a, b,�MD

)
=
{
EMD(a,�MD,EMEC(B)

}

(9)U
(
a, b,�MD

)
= �TT

(
a, b,�MD

)
+ �EE

(
a, b,�MD

)

var ∶ �MD ∈ Ψ,

am, bm,n ∈ {0, 1},∀m ∈ M,∀n ∈ N.

the time. It doesn't care whether the current best outcome leads
to the overall best outcome. This algorithm is based on the prin-
ciple of making the best decision possible at each step without
regards for future consequences or general optimization.

Lemma 1  The entropy of a set of characters, P, is denoted
by H(M) ≤ CL(M) ≤ H(M) + 1 , the average code length of
Huffman codes being CL(M) , and the frequency distribution
of those codes being H(M).

3.3.1 � Encoding using Run‑length Huffman (RLH)

Code length and entropy In RLH, we use Run-length encoding
(RLE) to determine the distribution of characters. The size of a
Run-length Huffman (RLH) code depends on several factors,
including the input data and the encoding scheme used. The RLH
encoding scheme is used to optimise the encoding scheme and
achieve higher compression ratios by analyzing the frequency of
occurrence of runs of repeated values. This means that the dis-
tribution of PRLH characters is a derivative of the distribution of
P. The RLH entropy is denoted by the letter H

(
MRLH

)
≤ H(M) .

When coupled with the first lemma, we get:

As a matter of fact, the code is significantly shorter when
put to use. Length-wise, RLH codes tend to be more sub-
stantial than Elias'.

All encoding techniques theoretically require at least O(t)
time for Q(g) ∈ ℝ

t . Iterative learning hierarchies (ILCs) are
preferable to RLH because a second pass over Q(g) is not
required prior to code assignment. Here we propose a sam-
pling method that, while increasing average code-length
slightly, helps mitigate the additional burden RLH imposes.
It employs a run-length compression method similar to that
of RLH. The Run-length Huffman (RLH) encoding and the
run-length compression method are two approaches that
efficiently compress data containing long runs of repeated
values. In the run-length compression method, consecutive
repeated values are substituted with a count of the num-
ber of times they appear in a row. Similarly, RLH encoding
compresses data with long runs of repeated values by group-
ing consecutive repeated values into runs and assigning a
variable-length code to each run.

3.3.2 � SH encoding (Sample Huffman)

Entropy and code length Let M =
{
m1m2m3, ..,ms

}
 denote

the original quantized gradient's probability distribution and

(10)CL
(
MRLH

)
≤ H

(
MRLH

)
+ 1 ≤ H(M) + 1 ≤ CL(M)

	 Mobile Networks and Applications

1 3

M� =
{
m

�

1m
�

2m3
�,…m

�

s

}
 the sample size S. The entropy

and average code-length of SH are then as follows:

where
{
l1, l2,… , lk

}
 denotes the character code word lengths

with distribution M′ . We get CL
(
M�

)
≤ H

(
M�

)
+ 1 from

Lemma 1 because we're using Huffman coding on M′ . We
have |S| → T and

|||m
′

i
||| → mi , so we have H

(
M�

)
→ H(M)

and thus CL
(
M�

)
→ CL(M) , which is the average Huffman

code-length.
Huffman coding is inefficient for sparse vectors because it

encodes each character. Developing a sparse encoding method
is essential. Sparse encoding is a crucial technique in Huffman
coding as it allows for the efficient encoding of symbols that
appear less frequently in the input data. In Huffman coding,
each symbol is allocated a variable-length code based on its
frequency of occurrence, with more frequent symbols allocated
shorter codes and less frequent symbols assigned longer codes.

3.3.3 � Huffman Sample with Minimal Information (SHS)

Entropy and the Best Possible Code  The probability distribu-
tion of SHS s + � characters of length cap � is given for a set
s + 1 of distribution of characters M� =

{
m1,m2,m3,…ms

}
 ,

where P is the likelihood that the character will actually
exist.

Therefore, the entropy is

Given the status of � → ∞ , we obtain

When � → ∞ , the best possible SHS codes are gener-
ated. The following lemma is derived from the preceding
definitions.

Lemma 2  Specifically, we have for SHS with length cap 𝛾 > 0

to ensure that the average SHS code length achieved by a
length cap is within Δ + 1 bits of CL

(
M∞

)
.

(11)H
(
M�

)
= −

∑s

i=1
m

�

ilog
(
m

�

i

)

(12)CL
(
M�

)
= −

∑s

i=1
m

�

ili,

(13)
M� =

{
m1,m2,m3,…ms

}
∪
{
mi(1 − m)|i ∈ [1|� − 1]

}
∪ {m�}

(14)
H
(
m�

)
= −m� log(m�) −

∑s

i=1
mi log

(
mi

)
−
∑�−1

i=1
(1 − m)mi log

(
mi(1 − m)

)

(15)

H
(
M∞

)
= −

∑s

i=1
mi log

(
mi

)
− m log(1 − m) − m

log(m)

1 − m

(16)
H
(
M�

)
= H

(
M∞

)
+
(
m�+1logm

)
∕(1 − m) + m� log(1 − m)

Lemma 3  We have SHS with length can 𝛾 > 0.

Average and length-constrained character set entropy
The length of Huffman codes are denoted by CL

(
M�

)
 and

H
(
M�

)
 , respectively; and

3.3.4 � Time complexity analysis

Parallel implementation  This study's encoders can be paral-
lelized. If we have n workers, we can assign one to each of
the n sub vectors that make up the gradient for RLH, and then
calculate the frequencies of those sub vectors. We reduce the
frequency of each partitioned sequence's length while enhanc-
ing the frequency of the merged size by one when dealing with
partitioned sequences. If a run length sequence is split up into
multiple parts, we can merge them together once they're fin-
ished. Let ce

i
 represent the total length of the run of characters

ith at the termination of the ib
i+1

 partition for alli ∈ [0, n − 1] . It
is assumed for all h that the run length order of the character
(i + 1)th at the start of the i ∈ [1, n] divider has lengthcb

i+1
 . The

le
i
, ib
i+1

 frequency is lowered by one and the K sequence is raised
by one to represent the characterce

i
= cb

i+1
 . le

i
+ ib

i+1
 seconds are

needed to locate the frequencies. It is possible to sample SH and
SHS in n subsets over O(d∕n) time. Huffman tree construction
for s characters takes log(s) time when done in parallel. The
final tree has the letters

(
d�∕n

)
 for RLH, O(logk) for SH, and

O(log(s + �)) for SHS. The highly parallel nature of accelera-
tors like GPUs and FPGAs can be exploited by running these
algorithms in parallel.

3.4 � Markov approximation and algorithm design

Combinatorial network optimization problems can be
solved using the Markov approximation, a method that
was very recently proposed. The Markov approximation
method is a mathematical method for simplifying compli-
cated stochastic processes. The Markov approximation is
utilised in a number of fields, including financing, biology,
physics, and technology, to model various stochastic pro-
cesses such as particle behaviour in a gas, fluctuations in
stock prices in financial markets, and the spread of infec-
tious illnesses.

The Markov approximation technique is an effective
strategy for solving combinatorial network optimiza-
tion problems that assume network traffic can be repre-
sented as a Markov process. Log-sumexp approxima-
tion and the construction of Markov chains tailored to a

(17)H
(
m�

)
+ 1 = H

(
M∞

)
+ Δ + 1 ≤ CL

(
M∞

)
+ Δ + 1

(18)Δ = M� log(1 − m) +
(
m�+1logm

)
)∕(1 − m).

Mobile Networks and Applications	

1 3

specific problem yield efficient parallel implementations
for approximating problem resolution in this context. It has
been shown that the Markov approximation is both optimal
and converging.

3.4.1 � Approximation using the logarithm of the squared
expense

Let f = {a, b, ψMD} ∈ F represent a workable answer to
problem S1, with F representing the complete set of answers
that can be found within the given constraints. Problem S1
is represented by min

f∈F
Wf if we define utility Wf as the objec-

tive function of the system for a specific configuration f.
Hence, S1's MWIS problem is equivalent to the following:

where pf is the probability that state f occurs and f is the
percentage of time that state f occurs. The challenge here is
to find the lightest possible weighted configuration, with Wf
standing in for 'f's's relative importance. The log-sum-exp
approximation of min

f∈F
Wf  , using the Markov approximation

framework, provides

where � is a positive constant influencing the accuracy of
the approximation. The following information identifies the
approximation's accuracy: where |F| is the size of the set F:

The approximation gap decreases toward zero as � → ∞
increases, and eventually reaches unity. As shown in, the
following problem can be solved using the log-sum-exp
approximation in (13) P2

By satisfying the Karush–Kuhn–Tucker (KKT) conditions,
we can find the best answer to S2 since it is a convex problem.

(19)min
s≥0

=
∑

f∈F

sfWf

(20)s.t
∑

f∈F

sf = 1

(21)Wmin ≈ −
1

�
log

(
∑

f∈F

exp
(
−�Wx

)
)

(22)

min
f∈F

Wf −
1

�
log|F| ≤ −

1

�
log

(
∑

f∈F

exp
(
−�Wx

)
)

≤ min
f∈F

Wf

(23)
S2 ∶ min

p≥0

∑
f∈F

pfWf +
1

�

∑
f∈F

pf log pf

s.t
∑
f∈F

pf = 1

However, due to the vastness of the problem's solu-
tion space, it is unusual for someone to have complete
knowledge of F, which is required for a direct solution
of S2. Taking turns among various set ups in accordance
with their subsections Taking a random sample from the
distribution s * f in the configuration space F is a viable
strategy for addressing both Problems S2 and S1 (24). It
is challenging to design a Markov chain that is specific
to a given problem, achieves stationary distribution s * f,
and permits concurrent construction of the |M| tasks. one
of the most difficult aspects is determining an appropri-
ate set of states that precisely reflects the system under
consideration.

3.5 � Classification of deep belief network

3.5.1 � Restricted Boltzmann Machine (RBN)

Two-layer stochastic networks are referred to as RBM
in abbreviation. The two-layer stochastic networks are
significant because they are capable of learning complex
nonlinear relationships within high-dimensional data and
can generalize effectively to new data. The visible layer
is vv and the concealed layer is h. There are four nodes
on the visible layer and three on the hidden layer of the
Restricted Belief network seen in Fig. 2. The RBM net-
work differs from the Boltzmann network in that nodes
in a single layer have any impact on each other. RBMs
are commonly used in reduction of dimensionality, learn-
ing features, and shared filtering, whereas BMs are used
to model complex data distributions such as image and
speech data.

A random value of 1 or 0 is given to each node in
the RBM's evolution, based on the following posterior
probability:

From a macro perspective, an RBM can be described in
terms of its energy function and its probability distribution.

Energy Function:

Probability Distribution:

(24)sf
∗ =

exp
�
−�Wf

�

∑
f �∈F exp

�
−�Wf �

� ,∀f ∈ F

(25)
p
(
hi = 1|v

)
= f

(
bi + wiv

)

p
(
vi = 1∕h

)
= f

(
ai +WIh

)

(26)E(v, h) = −
∑

i∈v
aivi −

∑
j∈h

bjhj −
∑

i,j
vihjwij

(27)p(v, h) =
1

z
e−E(v,h)

	 Mobile Networks and Applications

1 3

The edge distribution of the visible layer can be calcu-
lated using this method.

(1)	 Applying the gradient method, we take log p(v, �) to
be the likelihood function, which does not alter the
monotonicity. To improve our learning efficiency, we
make adjustments to the parameters along the gradient
� log p(v,�)

��
 . Here are the specifics of the plan:

(2)	 Hinton proposes the Contrastive Divergence: CD algo-
rithm in 2002. It's a quick way to learn RBM, and the
process is laid out in the text.

4 � Result and analysis

The presented system model and algorithm will be used as
the basis for the numerical experiments in this section. All
of the algorithms and tests are executed on a Windows 10
machine with 8 GB of RAM and MATLAB 2021a. Edge
servers, located in the geographic centre of the service
region, are part of the simulation scenario alongside a few
mobile endpoints. There is a completely random distribu-
tion of mobile devices throughout the coverage area. Please
take note that the task requirements, including the data size
and required CPU cycles, are generated at random, making
the assignment specific to each mobile device (400, 100).
Computing power (F) of the edge servers is 40 GHz, while
that of the mobile device is only 0.5–1 GHz. We have Po I
set to transmit data at 100 mW and Pe I waiting for the result
at 10 mW. The base price for the edge server is 1, and the
baseline charging resource is 1 GHz Table 1.

(28)P(v) =
1

z

∑
h
e−E(v,h)

(29)

�(n + 1) = �(n) + a ∗
(

� log p(v,�)

��

)
, � ∈ {W, a, b}

−
� log p(v,Wij)

�Wij

= Ev

[
p
(
hi|v

)]
− v

(i)

j
∗ f

(
wi ∗ v(i) + bi

)

−
� log (v,bi)

�bi
= Ev

[
p
(
hi|v

)
∗ vj

]
− f

(
wi ∗ v(i)

)

−
� log p(v,aj)

�aj
= Ev

[
p
(
hi|v

)
∗ vj

]
− v

(i)

j

4.1 � Average energy consumption

Average Energy consumption �(X) =
∑

(xi−�)2

N−1

Table 1 and Fig. 3 compare the average amount of
energy used by the DBN-MAA method to that of other
approaches. Compared to other methods, the suggested
method uses a very small amount of energy. For example,
at the 10th node, the DBN-MAA method consumes only
2.134 J while the other techniques like AFCFS, MINET,
TRADEOFF, and IGTMA consume 7.527 J, 6.489 J,
5.489 J, and 3.946 J, respectively. Similarly, at the 70th
node, the DBN-MAA method consumes only 3.578 J while
the other techniques like AFCFS, MINET, TRADEOFF,
and IGTMA consume 8.108 J, 7.487 J, 6.319 J, and 5.298 J
of energy, respectively. This proves that compared to other
methods, the suggested method uses a very small amount
of energy and shows higher performance.

4.2 � System utility

The utility of the DBN-MAA method is compared to certain other
methodologies in Table 2 and Fig. 4. The DBN-MAA algorithm
incorporates the features of two influential algorithms: deep belief

� = mean(x)

Fig. 2   A example of restricted
Boltzmann machine

Table 1   Average energy consumption of DBN-MAA Method with
existing system

No of
Nodes

AFCFS MINET TRADE-
OFF

IGTMA DBN-MAA

10 7.527 6.489 5.489 3.946 2.134
20 7.628 6.673 5.618 4.247 2.478
30 7.727 6.827 5.829 4.578 2.687
40 7.826 6.926 5.916 4.729 2.867
50 7.927 7.102 6.099 4.9176 3.098
60 8.025 7.278 6.278 5.190 3.168
70 8.108 7.487 6.319 5.298 3.578

Mobile Networks and Applications	

1 3

networks (DBNs) and the Markov approximation algorithm
(MAA). DBNs are neural networks that have been developed to
extract complex features from high-dimensional data, whereas
MAA clarifies complicated stochastic procedures by considering

that the future state is solely determined by the current state. When
compared to other methods, the suggested method performs well.
For example, with 100 data points from a dataset, the DBN-MAA
method has a system utility of 44.26% while the other techniques
like AFCFS, MINET, TRADEOFF, and IGTMA have 25.56%,
31.22%, 35.29%, and 39.15% of system utility, respectively. Simi-
larly, with 700 data points, the DBN-MAA method has a latency
of 50.175% while the other techniques like AFCFS, MINET,
TRADEOFF, and IGTMA have 30.175%, 34.95%, 38.74%, and
43.87%, respectively. These findings demonstrate the superiority
of the proposed method over its rivals. Time Lag, or Latency, 4.3

The latency comparison of the DBN-MAA method to other
existing techniques is described in Table 3 and Fig. 5. The proposed
method consumes very little energy compared to the other meth-
ods. For example, at the 10th node, the DBN-MAA method has

Fig. 3   Average energy
consumption for DBN-MAA
Method with existing system

Table 2   System utility for DBN-MAA method with existing system

No of iterations AFCFS MINET TRADEOFF IGTMA DBN-MAA

100 25.56 31.22 35.29 39.15 44.26
200 26.41 31.62 35.82 40.28 45.28
300 26.85 32.78 36.43 41.38 46.18
400 27.11 33.17 36.75 41.93 47.82
500 27.89 33.82 37.11 42.18 48.56
600 28.45 34.38 37.95 43.28 49.27
700 30.17 34.95 38.74 43. 87 50.17

Fig. 4   System utility for DBN-
MAA method with existing
system

	 Mobile Networks and Applications

1 3

a latency of only 14.32 s while the other techniques like AFCFS,
MINET, TRADEOFF, and IGTMA have 123.46 s, 85.36 s,
42.51 s, and 25.42 s of latency, respectively. Similarly, at the 70th
node, the DBN-MAA method has a latency of 56.89 s while the
other techniques like AFCFS, MINET, TRADEOFF, and IGTMA
have 183.22 s, 138.57 s, 91.22 s, and 79.78 s of latency, respec-
tively. This proves that the proposed method has very low latency
compared to the other techniques and shows higher performance.

4.3 � Throughput

AFCFS, MINET, TRADEOFF, IGTMA, and DBN-MAA
methods are evaluated based on the number of nodes for
throughput analysis in Table 4 and Fig. 6. When 100 nodes are
employed, the DBN-MAA's throughput has been measured as
1053.67kbps. The network throughput of 925.79 Kbps, 958.33
Kbps, 992.23 Kbps, and 1013.41 kbps for AFCFS, MINET,
TRADEOFF, and IGTMA methods, respectively. Similarly, at

700 nodes, the DBN-MAA method has a throughput of 1118.67
kbps while it is 957.66 kbps, 993.32 kbps, 1015.42 kbps, and
1049.69 kbps for AFCFS, MINET, TRADEOFF, and IGTMA,
respectively. According to the study, DBN-MAA exceeds the
other methods in terms of effectiveness (Fig. 7).

4.4 � Time complexity

The time complexity of the DBN-MAA model is shown
in Fig. 6 and Table 5. Bluetooth is currently used by the
majority of smart devices to connect smartphones, and this
connection uses far less energy than 3G/LTE or Wi-Fi does.
The existing AFCFS, MINET, TRADEOFF, and IGTMA
systems take longer time than the proposed DBN-MAA
system. For 100 data points from the dataset, the proposed
method takes 22.32 s while the other methods like AFCFS,
MINET, TRADEOFF, and IGTMA take 39.28 s, 34.51 s,

Table 3   Latency Analysis for DBN-MAA Method with existing sys-
tem (sec)

No of nodes AFCFS MINET TRADEOFF IGTMA DBN-MAA

10 123.46 85.36, 42.51 25.42 14.32
20 135.68 88.27 45.68 35.58 20.76
30 147.84 91.62 57.24 40.91 26.27
40 151.35 93.77 60.27 47.98 32.37
50 171.64 110.36 78.29 62.48 45.55
60 179.58 127.56 86.27 68.68 50.38
70 183.22 138.57 91.22 79.78 56.89

Fig. 5   Latency Analysis for
DBN-MAA Method with exist-
ing system

Table 4   Throughput Analysis for DBN-MAA Method with existing
system(kbps)

No of nodes AFCFS MINET TRADEOFF IGTMA DBN-MAA

100 925.79 958.33 992.23 1013.41 1053.67
200 9300.22 965.66 998.79 1019.25 1067.89
300 932.75 971.57 994.24 1023.77 1071.34
400 940.14 979.19 1003.31 1028.31 1079.50
500 943.46 984.75 1004.69 1035.64 1083.39
600 951.68 989.78 1011.69 1043.52 1090.86
700 957.66 993.32 1015.42 1049.69 1118.67

Mobile Networks and Applications	

1 3

30.11 s, and 26.13 s, respectively. Similarly, for 700 data
points, the DBN-MAA method takes only 25.44 s while
the other methods like AFCFS, MINET, TRADEOFF,
and IGTMA take 42.87 s, 37.68 s, 33.25 s, and 29.53 s,
respectively.

4.5 � Accuracy

Both Table 6 and Fig. 8 compare the DBN-MAA method's accu-
racy to that of other popular methods. When compared to alter-
native approaches, the proposed method performs exceptionally
well. When applied to a sample of 100 data points from a dataset,

Fig. 6   Throughput Analysis for
DBN-MAA Method with exist-
ing system

Table 5   Time complexity for DBN-MAA Method with existing system

No of
data from
dataset

AFCFS MINET TRADEOFF IGTMA DBN-MAA

100 39.28 34.51 30.11 26.13 22.32
200 40.37 35.44 31.63 26.48 23.69
300 41.23 35.79 31.94 27.44 23.75
400 41.68 34.74 32.54 28.15 22.64
500 40.83 36.16 30.85 28.71 24.44
600 42.33 37.25 32.78 27.73 24.79
700 42.87 37.68 33.25 29.53 25.44

Table 6   Accuracy analysis for DBN-MAA method with existing sys-
tem

No of
data from
dataset

AFCFS MINET TRADEOFF IGTMA DBN-MAA

100 75.46 79.84 83.63 88.61 92.64
200 76.25 80.73 84.79 89.32 93.46
300 77.15 81.27 85.53 90.63 94.53
400 78.53 82.37 86.85 91.29 95.32
500 79.27 83.18 87.42 92.14 96.19
600 79.54 83.44 87.77 92.51 97.43
700 80.18 84.19 88.28 93.09 97.87

Fig. 7   Time complexity for
DBN-MAA Method with exist-
ing system

	 Mobile Networks and Applications

1 3

the DBN-MAA method achieves an accuracy of 92.64%, while
the AFCFS method achieves only 75.46% accuracy, the MINET
method achieves only 79.84% accuracy, and the TRADEOFF
method achieves only 83.63% accuracy, and the IGTMA method
achieves only 88.61% accuracy. Comparatively, the DBN-MAA
method has a latency of 97.87% with 700 data points, while the
AFCFS method has 80.18%, the MINET method has 84.19%,
the TRADEOFF method has 88.28%, and the IGTMA method
has 93.09%. This demonstrates that the proposed method is more
accurate and efficient than competing methods.

5 � Conclusion

The cloud can alleviate task bottlenecks caused by a lack of com-
puting resources on either the local machine or the cloud by off-
loading tasks to the mobile edge. In this paper, we propose a novel
scheduling method (deterministic bias network multi-objective
augmentation, or DBN-MAA) to simultaneously optimise mul-
tiple objectives by fusing the best aspects of immune-based and
traditional scheduling approaches. The findings of this research
contribute in three ways. The proposed system model consists
of various components such as communication and computing
resources, mobile device energy usage, and work weight. In addi-
tion, the scenario where a mobile device can create multiple jobs
simultaneously is taken into account. And finally, the evolutionary
algorithm incorporates both the bat and immune algorithms, so
that convergence and diversity are both guaranteed. In this paper,
we investigate computation offloading within the framework of
mobile edge computing, where a single MD may employ multiple
MEC nodes. Reducing the MD's energy consumption and task
execution time requires optimal task assignment and frequency
scaling. The Markov approximation is used to approximate the
optimal solution to an NP-hard problem with a small, bounded
error. Our algorithm is nearly optimal in terms of scalability,
robustness, and performance, as demonstrated by simulations.

The advantage of DBN-MAA is, it reduce image data irrelevance
and redundancy in order to store or transmit data in an efficient
manner. Its objective is to lower the amount of bits needed to rep-
resent an image. It performs better than exhaustive searching and
local processing. Many-Markov-approximation (MD) research
is planned for the future. In this online demonstration, we will
implement our method (DBN-MAA) by simulating the arrival
and departure of simulated medical doctors. A real-world mobile
edge computing testbed can also be used to assess the work's effi-
cacy. The computation offloading model will be further developed
and improved in subsequent work by taking into account more
realistic use cases. We'll also look into other potential approaches
to offloading optimization beyond multi-objective swarm intel-
ligence algorithms.

Authors' contributions  All author is contributed to the design and
methodology of this study, the assessment of the outcomes and the
writing of the manuscript.

Data availability  No datasets were generated or analyzed during the
current study.

Code availability  Not applicable.

Declarations 

Conflicts of interests  Authors do not have any conflicts.

References

	 1.	 Meng S, Wang Y, Miao Z, Sun K (2018) Joint optimization of wire-
less bandwidth and computing resource in cloudlet-based mobile
cloud computing environment. Peer-to-Peer Netw Appl 11:462–472

	 2.	 Dinh HT, Lee C, Niyato D, Wang P (2013) A survey of mobile cloud
computing: Architecture, applications, and approaches. Wirel Com-
mun Mob Comput 13:1587–1611

	 3.	 Yang G, Hou L, He X, He D, Chan S, Guizani M (2021) Offload-
ing time optimization via Markov decision process in mobile-edge
computing. IEEE Internet Things J 8:2483–2493

Fig. 8   Accuracy analysis for
DBN-MAA method with exist-
ing system

Mobile Networks and Applications	

1 3

	 4.	 Li Z, Chang V, Ge J, Pan L, Hu H, Huang B (2021) Energy-aware
task offloading with deadline constraint in mobile edge computing.
EURASIP J Wirel Commun Netw 2021:32569–32581

	 5.	 Bi J, Yuan H, Duanmu S, Zhou M, Abusorrah A (2021) Energy-
optimized partial computation offloading in mobile-edge computing
with genetic simulated-annealing-based particle swarm optimiza-
tion. IEEE Internet Things J 8:3774–3785

	 6.	 Hmimz Y, Chanyour T, Ghmary ME, Malki MOC (2021) Bi-
objective optimization for multi-task offloading in latency and radio
resources constrained mobile edge computing networks. Multimed
Tools Appl 80:17129–17166

	 7.	 Mazouzi H, Boussetta K, Achir N (2019) maximizing mobiles
energy saving through tasks optimal offloading placement in two-
tier cloud: a theoretical and an experimental study. Comput Com-
mun 144:132–148

	 8.	 Zhang JM, Yang FY, Wu ZY (2019) Multi-access Edge Computing
(MEC) and Key Technologies. Post & Telecom Press, Beijing

	 9.	 Wu S, Xia W, Cui W et al (2018) An efficient offloading algorithm
based on Support vector machine for mobile edge computing in
vehicular networks. In Proceedings of the 2018 10th International
Conference on Wireless Communications and Signal Processing
(WCSP), pp. 1–6, Hangzhou, China

	10.	 You C, Huang K, Chae H, Kim BH (2017) Energy-efficient resource
allocation for mobile-edge computing offloading. IEEE Trans Wire-
less Commun 16(3):1397–1411

	11.	 Cao X, Wang F, Xu J, Zhang R, Cui S (2016) Joint computation and
communication cooperation for mobile edge computing. 2018 16th
International Symposium on Modeling and Optimization in Mobile,
Ad Hoc, and Wireless Networks (WiOpt). IEEE, 2018

	12.	 Sardellitti S, Scutari G, Barbarossa S (2015) Joint optimiza-
tion of radio and computational resources for multicell mobile
edge computing. IEEE Trans Signal Inf Process Over Netw
1(2):89–103

	13.	 Jang Y, Na J, Jeong S, Kang J (2020) Energy-Efficient Task
Offloading for Vehicular Edge Computing: Joint Optimization
of Offloading and Bit Allocation. In: 2020 IEEE 91st Vehicular
Technology Conference (VTC2020-Spring). pp 1–5

	14.	 Deng S, Huang L, Taheri J, Zomaya AY (2015) Computation off-
loading for service workflow in mobile cloud computing. IEEE
Trans Parallel Distrib Syst 26(12):3317–3329

	15.	 Ale L, Zhang N, Fang X, Chen X, Wu S, Li L (2021) Delay-aware
and energy-efficient computation offloading in mobile-edge comput-
ing using deep reinforcement learning. IEEE Trans Cogn Commun
Netw 7(3):881–892

	16.	 Anajemba JH, Yue T, Iwendi C, Alenezi M, Mittal M (2020) Opti-
mal cooperative offloading scheme for energy efficient multi-access
edge computation. IEEE Access 8:53931–53941

	17.	 Li B, Pei Y, Wu H, Shen B (2015) Heuristics to allocate high-perfor-
mance cloudlets for computation offloading in mobile ad hoc clouds.
J Supercomput 71(8):3009–3036

	18.	 Sun J, Gu Q, Zheng T (2019) Joint communication and computing
resource allocation in vehicular edge computing. Int J Distrib Sens
Netw 15(3):1–13

	19.	 Hao Y, Liu G (2015) Evaluation of nine heuristic algorithms with
data-intensive jobs and computing-intensive jobs in a dynamic envi-
ronment. IET Softw 9(1):7–16

	20.	 Tao Y, Zhang Y, Ji Y (2015) Efficient computation offloading strate-
gies for mobile cloud computing. Proc - Int Conf Adv Inf Netw Appl
AINA 2015-April:626–633. https://​doi.​org/​10.​1109/​AINA.​2015.​246

	21.	 Wang F, Xu J, Wang X, Cui S (2016) Joint offloading, and com-
puting optimization in wireless powered mobile-edge computing
system. In: Proceeding of the 2016 IEEE ICC, IEEE, Paris, pp.1–6

	22.	 Chen X, Jiao L, Li W, Fu X (2016) Efficient multi-user computa-
tion offloading for mobile-edge cloud computing. IEEE/ACM Trans
Netw 24(5):2795–2808

	23.	 Jain DK, Liu X, Neelakandan S, Prakash M (2022) Modeling of
human action recognition using hyperparameter tuned deep learn-
ing model. J Electron Imaging 32(1):011211. https://​doi.​org/​10.​
1117/1.​JEI.​32.1.​011211

	24.	 Sreekala K, Cyril CPD, Chandrasekaran S, Walia R, Martinson EO Capsule
network-based deep transfer learning model for face recognition. Wirel Com-
mun Mob Comput 2022. https://​doi.​org/​10.​1155/​2022/​20866​13

	25.	 Sunitha G, Geetha K, Pundir AKS, Hemalatha S, Kumar V (2022)
Intelligent deep learning-based ethnicity recognition and classifica-
tion using facial images. Image Vis Comput 121. https://​doi.​org/​10.​
1016/j.​imavis.​2022.​104404

	26.	 Wu G, Chen J, Bao W, Zhu X, Xiao W, Wang J (2017) Towards
collaborative storage scheduling using alternating direction method
of multipliers for mobile edge cloud. J Syst Softw 134:29–43

	27.	 Pu L, Chen X, Mao G, Xie Q, Xu J (2019) Chimera: an energy-efficient
and deadline-aware hybrid edge computing framework for vehicular
crowdsensing applications. IEEE Internet Things J 6(1):84–99

	28.	 Fakhri ZH, Khan M, Sabir F, Al-Raweshidy HS (2018) A resource alloca-
tion mechanism for cloud radio access network based on cell differentia-
tion and integration concept. IEEE Trans Netw Sci Eng 5(4):261–275

	29.	 Tong Z, Deng XM, Chen HJ, Mei J (2021) DDMTS: a novel
dynamic load balancing scheduling scheme under SLA constraints
in cloud computing. J Parallel Distrib Comput 149:138–148

	30.	 Sethukarasi T, Prakash M, Baburaj E (2023) An Efficient Hybrid Job
Scheduling Optimization (EHJSO) approach to enhance resource
search using Cuckoo and Grey Wolf Job Optimization for cloud
environment. PLOS ONE 18(3):e0282600. https://​doi.​org/​10.​1371/​
journ​al.​pone.​02826​00

	31.	 Ezhumalai P et al (2023) Improved wild horse optimization with levy
flight algorithm for effective task scheduling in cloud computing. J
Cloud Comp 12:24. https://​doi.​org/​10.​1186/​s13677-​023-​00401-1

	32.	 Li K (2021) Heuristic computation offloading algorithms for mobile
users in fog computing. ACM Trans Embed Comput Syst 20:1–28

	33.	 Wu Y, Cao J, Li Q, Alsaedi A, Alsaadi FE (2017) Finite-time syn-
chronization of uncertain coupled switched neural networks under
asynchronous switching. Neural Netw 85:128–139

Publisher's note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.1109/AINA.2015.246
https://doi.org/10.1117/1.JEI.32.1.011211
https://doi.org/10.1117/1.JEI.32.1.011211
https://doi.org/10.1155/2022/2086613
https://doi.org/10.1016/j.imavis.2022.104404
https://doi.org/10.1016/j.imavis.2022.104404
https://doi.org/10.1371/journal.pone.0282600
https://doi.org/10.1371/journal.pone.0282600
https://doi.org/10.1186/s13677-023-00401-1

	Computation Offloading for Image Compression in Mobile Edge Computing Using a Deep Belief Network Based on the Markov Approximation Algorithm
	Abstract
	1 Introduction
	2 Literature survey
	3 Proposed system
	3.1 System model
	3.2 Problem formulation
	3.3 Huffman encoding
	3.3.1 Encoding using Run-length Huffman (RLH)
	3.3.2 SH encoding (Sample Huffman)
	3.3.3 Huffman Sample with Minimal Information (SHS)
	3.3.4 Time complexity analysis

	3.4 Markov approximation and algorithm design
	3.4.1 Approximation using the logarithm of the squared expense

	3.5 Classification of deep belief network
	3.5.1 Restricted Boltzmann Machine (RBN)

	4 Result and analysis
	4.1 Average energy consumption
	4.2 System utility
	4.3 Throughput
	4.4 Time complexity
	4.5 Accuracy

	5 Conclusion
	References

